Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS (original) (raw)

High erythropoietin and low vascular endothelial growth factor levels in cerebrospinal fluid from hypoxemic ALS patients suggest an abnormal response to hypoxia

Neuromuscular Disorders, 2007

Animal studies have highlighted the potentially neuroprotective role of vascular endothelial growth factor (VEGF). Low levels of this growth factor have been found in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). VEGF (and other proteins, such as erythropoietin (EPO)) are produced in response to hypoxia via a common pathway involving a specific transcription factor (hypoxia-inducible factor, HIF) and a hypoxia responsive element (HRE) in the respective genes' promoter regions. In this study, we report finding the expected, high levels of VEGF and EPO in CSF from hypoxemic neurological controls, whereas EPO (but not VEGF) levels are high in the CSF from hypoxemic ALS patients. Hence, the VEGF levels in CSF from patients with ALS were significantly lower than those seen in hypoxemic controls. There was a trend towards higher CSF levels of EPO in hypoxemic ALS patients than in hypoxemic controls. Our results suggest that VEGF may not be produced in sufficient amounts in chronically hypoxic ALS patients and that this dysfunction may participate in the pathogenesis of the disease. The high EPO levels in hypoxemic ALS patients nevertheless suggest an intact common oxygen-sensor pathway.

Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis

2008

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Previous proteomic evidence revealed that the content of certain peptide fragments including Vgf-derived peptide aa 398-411 (Vgf 398-411 ) of the precursor Vgf protein in the cerebral spinal fluid (CSF) correctly identified patients with ALS from normal and disease controls. Using quantitative ELISA immunoassay we found that the CSF levels of Vgf decreases with muscle weakness in patients with ALS. In SOD1 G93A transgenic mice, loss of full-length Vgf content in CSF, serum and in SMI-32 immunopositive spinal cord motor neurons is noted in asymptomatic animals (approximately 75 days old) and continues to show a progressive decline as animals weaken. In vitro studies show that viral-mediated exogenous Vgf expression in primary mixed spinal cord neuron cultures attenuates excitotoxic injury. Thus, while Vgf may be a reliable biomarker of progression of muscle weakness in patients with ALS, restoration of Vgf expression in spinal cord motor neurons may therapeutically rescue spinal cord motorneurons against excitotoxic injury.

Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration

Nature genetics, 2001

Hypoxia stimulates angiogenesis through the binding of hypoxia-inducible factors to the hypoxia-response element in the vascular endothelial growth factor (Vegf) promotor. Here, we report that deletion of the hypoxia-response element in the Vegf promotor reduced hypoxic Vegf expression in the spinal cord and caused adult-onset progressive motor neuron degeneration, reminiscent of amyotrophic lateral sclerosis. The neurodegeneration seemed to be due to reduced neural vascular perfusion. In addition, Vegf165 promoted survival of motor neurons during hypoxia through binding to Vegf receptor 2 and neuropilin 1. Acute ischemia is known to cause nonselective neuronal death. Our results indicate that chronic vascular insufficiency and, possibly, insufficient Vegf-dependent neuroprotection lead to the select degeneration of motor neurons.

Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2) in amyotrophic lateral sclerosis

BMC Medical Genetics, 2007

Background Vascular endothelial growth factor (VEGF) has neurotrophic activity which is mediated by its main agonist receptor, VEGFR2. Dysregulation of VEGF causes motor neurone degeneration in a mouse model of amyotrophic lateral sclerosis (ALS), and expression of VEGFR2 is reduced in motor neurones and spinal cord of patients with ALS. Methods We have screened the promoter region and 4 exonic regions of functional significance of the VEGFR2 gene in a UK population of patients with ALS, for mutations and polymorphisms that may affect expression or function of this VEGF receptor. Results No mutations were identified in the VEGFR2 gene. We found no association between polymorphisms in the regulatory regions of the VEGFR2 gene and ALS. Conclusion Mechanisms other than genetic variation may downregulate expression or function of the VEGFR2 receptor in patients with ALS.

Roles of Vascular Endothelial Growth Factor in Amyotrophic Lateral Sclerosis

BioMed Research International, 2014

Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will...