Production of Calcium Oxalate Crystals by the Basidiomycete Moniliophthora perniciosa, the Causal Agent of Witches’ Broom Disease of Cacao (original) (raw)

Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa

Plant Science, 2007

Moniliophthora perniciosa, the causal agent of witches’ broom disease of Theobroma cacao, significantly affected cacao production in South America and Caribbean countries. Host colonization by the pathogen exhibits a concerted succession of symptoms, starting with hypertrophic growth and “broom” formation, followed by tissue degeneration and death. To understand mechanisms of host susceptibility, we investigated fungal development during a compatible interaction with a susceptible genotype. Microscopic analysis revealed the initial fungal biotrophic intercellular growth, followed by intracellular growth associated with the presence of an increasing number of host apoptotic nuclei and calcium oxalate crystals, with subsequent accumulation of hydrogen peroxide and cell death. Active oxalate degradation and its possible source of origin were detected in infected tissues. Together, these processes may increase the availability of nutrients for the fungal mycelia and may contribute to the disease cycle in this plant–fungal hemibiotrophic interaction. Based on the histological and gene expression data, a novel role for calcium oxalate in disease susceptibility is proposed.

Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi

International Biodeterioration & Biodegradation, 2011

Twenty-six species of white-rotting Agaricomycotina fungi (Basidiomycota) were screened for their ability to produce calcium-oxalate (CaOx) crystals in vitro. Most were able to produce CaOx crystals in malt agar medium in the absence of additional calcium. In the same medium enriched with Ca2+, all the species produced CaOx crystals (weddellite or whewellite). Hyphae of four species (Ganoderma lucidum, Polyporus ciliatus, Pycnoporus cinnabarinus, and Trametes versicolor) were found coated with crystals (weddellite/whewellite). The production of CaOx crystals during the growth phase was confirmed by an investigation of the production kinetics for six of the species considered in the initial screening (Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus, P. cinnabarinus, Trametes suaveolens, and T. versicolor). However, the crystals produced during the growth phase disappeared from the medium over time in four of the six species (P. citrinopileatus, P. eryngii, P. cinnabarinus, and T. suaveolens). For P. cinnabarinus, the disappearance of the crystals was correlated with a decrease in the total oxalate concentration measured in the medium from 0.65 μg mm−2 (at the maximum accumulation rate) to 0.30 μg mm−2. The decrease in the CaOx concentration was correlated with a change in mycelia morphology. The oxalate dissolution capability of all the species was also tested in a medium containing calcium oxalate as the sole source of carbon (modified Schlegel medium). Three species (Agaricus blazei, Pleurotus tuberregium, and P. ciliatus) presented a dissolution halo around the growth zone. This study shows that CaOx crystal production is a widespread phenomenon in white-rot fungi, and that an excess of Ca2+ can enhance CaOx crystal production. In addition, it shows that some white-rot fungal species are capable of dissolving CaOx crystals after growth has ceased. These results highlight a diversity of responses around the production or dissolution of calcium oxalate in white-rot fungi and reveal an unexpected potential importance of fungi on the oxalate cycle in the environment.

A potential role for an extracellular methanol oxidase secreted by Moniliophthora perniciosa in Witches’ broom disease in cacao

The hemibiotrophic basidiomycete fungus Moniliophthora perniciosa, the causal agent of Witches' broom disease (WBD) in cacao, is able to grow on methanol as the sole carbon source. In plants, one of the main sources of methanol is the pectin present in the structure of cell walls. Pectin is composed of highly methylesterified chains of galacturonic acid. The hydrolysis between the methyl radicals and galacturonic acid in esterified pectin, mediated by a pectin methylesterase (PME), releases methanol, which may be decomposed by a methanol oxidase (MOX). The analysis of the M. pernciosa genome revealed putative mox and pme genes. Real-time quantitative RT-PCR performed with RNA from mycelia grown in the presence of methanol or pectin as the sole carbon source and with RNA from infected cacao seedlings in different stages of the progression of WBD indicate that the two genes are coregulated, suggesting that the fungus may be metabolizing the methanol released from pectin. Moreover, immunolocalization of homogalacturonan, the main pectic domain that constitutes the primary cell wall matrix, shows a reduction in the level of pectin methyl esterification in infected cacao seedlings. Although MOX has been classically classified as a peroxisomal enzyme, M. perniciosa presents an extracellular methanol oxidase. Its activity was detected in the fungus culture supernatants, and mass spectrometry analysis indicated the presence of this enzyme in the fungus secretome. Because M. pernciosa possesses all genes classically related to methanol metabolism, we propose a peroxisome-independent model for the utilization of methanol by this fungus, which begins with the extracellular oxidation of methanol derived from the demethylation of pectin and finishes in the cytosol.

Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa

Plant Physiology and Biochemistry, 2011

In plantepathogen interaction, the hydrogen peroxide (H 2 O 2 ) may play a dual role: its accumulation inhibits the growth of biotrophic pathogens, while it could help the infection/colonization process of plant by necrotrophic pathogens. One of the possible pathways of H 2 O 2 production involves oxalic acid (Oxa) degradation by apoplastic oxalate oxidase. Here, we analyzed the production of H 2 O 2 , the presence of calcium oxalate (CaOx) crystals and the content of Oxa and ascorbic acid (Asa) e the main precursor of Oxa in plants e in susceptible and resistant cacao (Theobroma cacao L.) infected by the hemibiotrophic fungus Moniliophthora perniciosa. We also quantified the transcript level of ascorbate peroxidase (Apx), germin-like oxalate oxidase (Glp) and dehydroascorbate reductase (Dhar) by RT-qPCR. We report that the CaOx crystal amount and the H 2 O 2 levels in the two varieties present distinct temporal and genotypedependent patterns. Susceptible variety accumulated more CaOx crystals than the resistant one, and the dissolution of these crystals occurred in the early infection steps and in the final stage of the disease in the resistant and the susceptible variety, respectively. High expression of the Glp and accumulation of Oxa were observed in the resistant variety. The content of Asa increased in the inoculated susceptible variety, but remained constant in the resistant one. The susceptible variety presented reduced Dhar expression. The role of H 2 O 2 and its formation from Oxa via Apx and Glp in resistant and susceptible variety infected by M. perniciosa were discussed.

The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthora perniciosa, the causal agent of witches' broom disease of Theobroma cacao

Genetics and Molecular Biology, 2009

This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.