Modeling and Control of Needles With Torsional Friction (original) (raw)

Controlling a Robotically Steered Needle in the Presence of Torsional Friction

IEEE International Conference on Robotics and Automation : ICRA : [proceedings] IEEE International Conference on Robotics and Automation, 2009

A flexible needle can be accurately steered by robotically controlling the orientation of the bevel tip as the needle is inserted into tissue. Here, we demonstrate the significant effect of friction between the long, flexible needle shaft and the tissue, which can cause a significant discrepancy between the orientation of the needle tip and the orientation of the base where the needle is controlled. Our experiments show that several common phantom tissues used in needle steering experiments impart substantial frictional forces to the needle shaft, resulting in a lag of over 45° for a 10 cm insertion depth in some phantoms; clinical studies have reported torques large enough to could cause similar errors during needle insertions. Such angle discrepancies will result in poor performance or failure of path planners and image-guided controllers, since the needles used in percutaneous procedures are too small for state-of-the-art imaging to accurately measure the tip angle. To compensate...

Robotics-Assisted Needle Steering for Percutaneous Interventions: Modeling and Experiments

Needle insertion and guidance plays an important role in medical procedures such as brachytherapy and biopsy. Flexible needles have the potential to facilitate precise targeting and avoid collisions during medical interventions while reducing trauma to the patient and post-puncture issues. Nevertheless, error introduced during guidance degrades the effectiveness of the planned therapy or diagnosis. Although steering using flexible bevel-tip needles provides great mobility and dexterity, a major barrier is the complexity of needletissue interaction that does not lend itself to intuitive control. To overcome this problem, a robotic system can be employed to perform trajectory planning and tracking by manipulation of the needle base. This research project focuses on a control-theoretic approach and draws on the rich literature from control and systems theory to model needle-tissue interaction and needle flexion and then design a robotics-based strategy for needle insertion/steering. The resulting solutions will directly benefit a wide range of needle-based interventions. The outcome of this computer-assisted approach will not only enable us to perform efficient preoperative trajectory planning, but will also provide more insight into needle-tissue interaction that will be helpful in developing advanced intraoperative algorithms for needle steering. Experimental validation of the proposed methodologies was carried out on a state of-the-art 5-DOF robotic system designed and constructed in-house primarily for prostate brachytherapy. The system is equipped with a Nano43 6-DOF force/torque sensor (ATI Industrial Automation) to measure forces and torques acting on the needle shaft. In our setup, an Aurora electromagnetic tracker (Northern Digital Inc.) is the sensing device used for measuring needle deflection. A multi-threaded application for control, sensor readings, data logging and communication over the ethernet was developed using Microsoft Visual C 2005, MATLAB 2007 and the QuaRC Toolbox (Quanser Inc.). Various artificial phantoms were developed so as to create a realistic medium in terms of elasticity and insertion force ranges; however, they simulated a uniform environment without exhibiting complexities of organic tissues. Experiments were also conducted on beef liver and fresh chicken breast, beef, and ham, to investigate the behavior of a variety biological tissues.

Evaluation of robotic needle steering in ex vivo tissue

2010 IEEE International Conference on Robotics and Automation, 2010

Insertion velocity, tip asymmetry, and shaft diameter may influence steerable needle insertion paths in soft tissue. In this paper we examine the effects of these variables on needle paths in ex vivo goat liver, and demonstrate practical applications of robotic needle steering for ablation, biopsy, and brachytherapy. All experiments were performed using a new portable needle steering robot that steers asymmetric-tip needles under fluoroscopic imaging. For bevel-tip needles, we found that larger diameter needles resulted in less curvature, i.e. less steerability, confirming previous experiments in artificial tissue. The needles steered with radii of curvature ranging from 3.4 cm (for the most steerable pre-bent needle) to 2.97 m (for the least steerable bevel needle). Pre-bend angle significantly affected needle curvature, but bevel angle did not. We hypothesize that biological tissue characteristics such as inhomogeneity and viscoelasticity significantly increase path variability. These results underscore the need for closed-loop image guidance for needle steering in biological tissues with complex internal structure.

Robotic Needle Steering: Design, Modeling, Planning, and Image Guidance

Surgical Robotics, 2010

This chapter describes how advances in needle design, modeling, planning, and image guidance make it possible to steer flexible needles from outside the body to reach specified anatomical targets not accessible using traditional needle insertion methods. Steering can be achieved using a variety of mechanisms, including tip-based steering, lateral manipulation, and applying forces to the tissue as the needle is inserted. Models of these steering mechanisms can predict needle trajectory based on steering commands, motivating new preoperative path planning algorithms. These planning algorithms can be integrated with emerging needle imaging technology to achieve intraoperative closed-loop guidance and control of steerable needles. 1 2 N. J. Cowan et al.

Mechanics of Flexible Needles Robotically Steered through Soft Tissue

The International Journal of Robotics Research, 2010

The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of needle-tissue interaction. Previous kinematic models required empirical observations of each needle and tissue combination in order to fit model parameters. This study describes a mechanics-based model of robotic needle steering, which can be used to predict needle behavior and optimize system design based on fundamental mechanical and geometrical properties of the needle and tissue. We first present an analytical model for the loads developed at the tip, based on the geometry of the bevel edge and material properties of softtissue simulants (gels). We then present a mechanics-based model that calculates the deflection of a bevel-tipped needle inserted through a soft elastic medium. The model design is guided by microscopic observations of needle-gel interactions. The energy-based formulation incorporates tissue-specific parameters, and the geometry and material properties of the needle. Simulation results follow similar trends (deflection and radius of curvature) to those observed in experimental studies of robotic needle insertion.

Automatic Steering of Manually Inserted Needles

Conference proceedings / IEEE International Conference on Systems, Man, and Cybernetics. IEEE International Conference on Systems, Man, and Cybernetics, 2013

Bevel-tipped flexible needles can be robotically steered to reach clinical targets along curvilinear paths in 3D. Manual needle insertion allows the clinician to control the insertion speed, ensuring patient safety. This paper presents a control law for automatic 3D steering of manually inserted flexible needles, enabling path-following control. A look-ahead proportional controller for position and orientation is presented. The look-ahead distance is a linear function of insertion speed. Simulations in a 3D brain-like environment demonstrate the performance of the proposed controller. Experimental results also show the feasibility of this technique in 2D and 3D environments.

Needle Steering and Motion Planning in Soft Tissues

IEEE Transactions on Biomedical Engineering, 2005

In this work, needle insertion into deformable tissue is formulated as a trajectory planning and control problem. A new concept of needle steering has been developed and a needle manipulation Jacobian defined using numerical needle insertion models that include needle deflection and soft tissue deformation. This concept is used in conjunction with a potential-field-based path planning technique to demonstrate needle tip placement and obstacle avoidance. Results from open loop insertion experiments are provided.

Nonholonomic Modeling of Needle Steering

The International Journal of Robotics Research, 2006

As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous therapies, facilitate research on therapy effectiveness, and eventually enable new minimally invasive techniques. In this paper, we consider a first step toward active needle steering: design and experimental validation of a nonholonomic model for steering flexible needles with bevel tips. The model generalizes the standard three degree-of-freedom (DOF) nonholonomic unicycle and bicycle models to 6 DOF using Lie group theory. Model parameters are fit using experimental data, acquired via a robotic device designed for the specific purpose of inserting and steering a flexible needle. The experiments quantitatively validate the bevel-tip needle steering model, enabling future research in flexible needle path planning, control, and simulation.

Image-guided Control of Flexible Bevel-Tip Needles

Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007

Physicians perform percutaneous therapies in many diagnostic and therapeutic procedures. Image guidance promises to improve targeting accuracy and broaden the scope of needle interventions. In this paper, we consider the possibility of automating the guidance of a flexible bevel-tip needle as it is inserted into human tissue. We build upon a previously proposed nonholonomic kinematic model to develop a nonlinear observer-based controller. As a first step for control, we show that flexible needles can be automatically controlled to remain within a planar slice of tissue as they are inserted by a physician; our approach keeps the physician in the loop to control insertion speed. In the proposed controller, the distance of the needle tip position from the plane of interest is used as a feedback signal. Numerical simulations demonstrate the stability and robustness of the controller in the face of parametric uncertainty. We also present results from pilot physical experiments with phantom tissue under stereo image guidance.

Guiding medical needles using single-point tissue manipulation

2009

This paper addresses the use of robotic tissue manipulation in medical needle insertion procedures to improve targeting accuracy and to help avoid damaging sensitive tissues. To control these multiple, potentially competing objectives, we present a phased controller that operates one manipulator at a time using closed-loop imaging feedback. We present an automated procedure planning technique that uses tissue geometry to select the needle insertion location, manipulation locations, and controller parameters. The planner uses a stochastic optimization of a cost function that includes tissue stress and robustness to disturbances. We demonstrate the system on 2D tissues simulated with a mass-spring model, including a simulation of a prostate brachytherapy procedure. It can reduce targeting errors from more than 2cm to less than 1mm, and can also shift obstacles by over 1cm to clear them away from the needle path.