A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory (original) (raw)

Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome

Microbial Biotechnology, 2013

Pseudomonas putida DOT-T1E is an organic solvent tolerant strain capable of degrading aromatic hydrocarbons. Here we report the DOT-T1E genomic sequence (6 394 153 bp) and its metabolic atlas based on the classification of enzyme activities. The genome encodes for at least 1751 enzymatic reactions that account for the known pattern of C, N, P and S utilization by this strain. Based on the potential of this strain to thrive in the presence of organic solvents and the subclasses of enzymes encoded in the genome, its metabolic map can be drawn and a number of potential biotransformation reactions can be deduced. This information may prove useful for adapting desired reactions to create value-added products. This bioengineering potential may be realized via direct transformation of substrates, or may require genetic engineering to block an existing pathway, or to re-organize operons and genes, as well as possibly requiring the recruitment of enzymes from other sources to achieve the desired transformation.

Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources

Journal of Bioscience and Bioengineering, 2010

Pseudomonas putida has a variety of potential uses in bioremediation and biosynthesis of biodegradable plastics. P. putida is able to utilize a wide range of carbon sources. In this study, P. putida KT2440 was grown on glucose, glycerol, citrate, or fatty acid (lauric acid) as the sole carbon source. Differences in expression levels of genes involved in the Entner-Doudoroff pathway, glycerol metabolism, TCA cycle and β-oxidation were detected using quantitative real-time PCR. When glycerol was the sole carbon source, expression of genes related to glycerol metabolism was enhanced with the exception of the negative regulon gene glpR. There were no significant differences in expression levels of genes that putatively encode enzymes involved in the Entner-Doudoroff pathway for cells grown on glucose as compared to cells grown on other carbon sources. Exceptions to this trend were the ABC transporter genes. Genes encoding enzymes selected from the TCA cycle all showed higher expression levels in cells grown on citrate. Two genes for β-oxidation enzymes, fadB and the long-chain fatty acid transporter gene, showed higher expression level when cells were grown on lauric acid. Genes encoding enzymes involved in PHA synthesis, phaC1, phaC2, phaZ, and phaJ4, all showed higher expression levels when cells were grown on lauric acid. This study has identified genes involved in the metabolism of different carbon sources and PHA synthesis. This information will be invaluable to understand how genes are regulated and construct transgenic strains to utilize carbon sources more efficiently and better produce PHAs.

Large-scale kinetic metabolic models of Pseudomonas putida for a consistent design of metabolic engineering strategies

2019

A high tolerance of Pseudomonas putida to toxic compounds and its ability to grow on a wide variety of substrates makes it a promising candidate for the industrial production of biofuels and biochemicals. Engineering this organism for improved performances and predicting metabolic responses upon genetic perturbations requires reliable descriptions of its metabolism in the form of stoichiometric and kinetic models. In this work, we developed large-scale kinetic models of P. putida to predict the metabolic phenotypes and design metabolic engineering interventions for the production of biochemicals. The developed kinetic models contain 775 reactions and 245 metabolites. We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale model of P. putida KT2440. We then applied the redGEM and lumpGEM algorithms to reduce the curated iJN1411 model systematically, and we created three core stoichiometric models of different complexity that describe the central carbon met...

Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production

Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L, paving the road for the production of high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum h...

Genome features of Pseudomonas putida LS46, a novel polyhydroxyalkanoate producer and its comparison with other P. putida strains

AMB Express, 2014

A novel strain of Pseudomonas putida LS46 was isolated from wastewater on the basis of its ability to synthesize medium chain-length polyhydroxyalkanoates (mcl-PHAs). P.putida LS46 was differentiated from other P.putida strains on the basis of cpn60 (UT). The complete genome of P.putida LS46 was sequenced and annotated. Its chromosome is 5,86,2556 bp in size with GC ratio of 61.69. It is encoding 5316 genes, including 7 rRNA genes and 76 tRNA genes. Nucleotide sequence data of the complete P. putida LS46 genome was compared with nine other P. putida strains (KT2440, F1, BIRD-1, S16, ND6, DOT-T1E, UW4, W619 and GB-1) identified either as biocontrol agents or as bioremediation agents and isolated from different geographical region and different environment. BLASTn analysis of whole genome sequences of the ten P. putida strains revealed nucleotide sequence identities of 86.54 to 97.52%. P.putida genome arrangement was LS46 highly similar to P.putida BIRD1 and P.putida ND6 but was markedly different than P.putida DOT-T1E, P.putida UW4 and P.putida W619. Fatty acid biosynthesis (fab), fatty acid degradation (fad) and PHA synthesis genes were highly conserved among biocontrol and bioremediation P.putida strains. Six genes in pha operon of P. putida LS46 showed >98% homology at gene and proteins level. It appears that polyhydroxyalkanoate (PHA) synthesis is an intrinsic property of P. putida and was not affected by its geographic origin. However, all strains, including P. putida LS46, were different from one another on the basis of house keeping genes, and presence of plasmid, prophages, insertion sequence elements and genomic islands. While P. putida LS46 was not selected for plant growth promotion or bioremediation capacity, its genome also encoded genes for root colonization, pyoverdine synthesis, oxidative stress (present in other soil isolates), degradation of aromatic compounds, heavy metal resistance and nicotinic acid degradation, manganese (Mn II) oxidation. Genes for toluene or naphthalene degradation found in the genomes of P. putida F1, DOT-T1E, and ND6 were absent in the P. putida LS46 genome. Heavy metal resistant genes encoded by the P. putida W619 genome were also not present in the P. putida LS46 genome. Despite the overall similarity among genome of P.putida strains isolated for different applications and from different geographical location a number of differences were observed in genome arrangement, occurrence of transposon, genomic islands and prophage. It appears that P.putida strains had a common ancestor and by acquiring some specific genes by horizontal gene transfer it differed from other related strains.

Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models

PloS one, 2017

Over 100 genome-scale metabolic networks (GSMNs) have been published in recent years and widely used for phenotype prediction and pathway design. However, GSMNs for a specific organism reconstructed by different research groups usually produce inconsistent simulation results, which makes it difficult to use the GSMNs for precise optimal pathway design. Therefore, it is necessary to compare and identify the discrepancies among networks and build a consensus metabolic network for an organism. Here we proposed a process for systematic comparison of metabolic networks at pathway level. We compared four published GSMNs of Pseudomonas putida KT2440 and identified the discrepancies leading to inconsistent pathway calculation results. The mistakes in the models were corrected based on information from literature so that all the calculated synthesis and uptake pathways were the same. Subsequently we built a pathway-consensus model and then further updated it with the latest genome annotation...

Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates

Microbial Biotechnology

The throwaway culture related to the single-use materials such as polyethylene terephthalate (PET) has created a major environmental concern. Recycling of PET waste into biodegradable plastic polyhydroxyalkanoate (PHA) creates an opportunity to improve resource efficiency and contribute to a circular economy. We sequenced the genome of Pseudomonas umsongensis GO16 previously shown to convert PET-derived terephthalic acid (TA) into PHA and performed an in-depth genome analysis. GO16 can degrade a range of aromatic substrates in addition to TA, due to the presence of a catabolic plasmid pENK22. The genetic complement required for the degradation of TA via protocatechuate was identified and its functionality was confirmed by transferring the tph operon into Pseudomonas putida KT2440, which is unable to utilize TA naturally. We also identified the genes involved in ethylene glycol (EG) metabolism, the second PET monomer, and validated the capacity of GO16 to use EG as a sole source of carbon and energy. Moreover, GO16 possesses genes for the synthesis of both medium and short chain length PHA and we have demonstrated the capacity of the strain to convert mixed TA and EG into PHA. The metabolic versatility of GO16 highlights the potential of this organism for biotransformations using PET waste as a feedstock.

Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440

Environmental Microbiology, 2002

Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.

Functional metagenomics using Pseudomonas putida expands the known diversity of polyhydroxyalkanoate synthases and enables the production of novel polyhydroxyalkanoate copolymers

2016

Bacterially produced biodegradable polyhydroxyalkanoates with versatile properties can be achieved using different PHA synthase enzymes. This work aims to expand the diversity of known PHA synthases via functional metagenomics, and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either Class I, Class II or unclassified PHA synthases, and many did not have close sequence matches to known PHA synthases. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of SCL- and MCL-PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics, and their use for the production of a variety of PHA polymer and copolymer mixtures.