Neural tube can induce fast myosin heavy chain isoform expression during embryonic development (original) (raw)
Related papers
Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers
Mechanisms of Development, 1996
The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo in an aneurogenic environment induced after neural tube ablation, the cardiac ventricular myosin heavy chain (MHC) isoform was not expressed. The adult slow MHC isoform, SM2, appeared by embryonic day 7 (ED 7) in normal innervated slow ALD but was not expressed in denervated muscle. Analysis of in vitro differentiation of myoblasts from fast PLD and slow ALD muscles isolated from ED 7 control and neuralectomized quail embryos showed no fundamental differences in the pattern of MHC isoform expression. Newly differentiated fibers accumulated cardiac ventricular, embryonic fast, slow SMl and SM3 MHC isoforms. Nevertheless, the expression of slow SM2 isoform in myotubes formed from slow ALD myoblasts only occurred when myoblasts were cultured in the presence of embryonic spinal cord. Our studies demonstrate that the neural tube influences primary as well as secondary myotube differentiation in avian forelimb and facilitates the expression of different MHC, particularly slow SM2 MHC gene expression in slow myoblasts.
Expression of myogenic regulatory factors in chicken embryos during somite and limb development
The expression of the myogenic regulatory factors (MRFs), Myf5, MyoD, myogenin (Mgn) and MRF4 have been analysed during the development of chicken embryo somites and limbs. In somites, Myf5 is expressed first in somites and paraxial mesoderm at HH stage 9 followed by MyoD at HH stage 12, and Mgn and MRF4 at HH stage 14. In older somites, Myf5 and MyoD are also expressed in the ventrally extending myotome prior to Mgn and MRF4 expression. In limb muscles a similar temporal sequence is observed with Myf5 expression detected first in forelimbs at HH stage 22, MyoD at HH stage 23, Mgn at HH stage 24 and MRF4 at HH stage 30. This report describes the precise time of onset of expression of each MRF in somites and limbs during chicken embryo development, and provides a detailed comparative timeline of MRF expression in different embryonic muscle groups.
Development, 1993
A unique pattern of expression of the four muscle regulatory factor (MRF) proteins was found to distinguish early somitic from embryonic, fetal and newborn limb myogenic cells in vitro. Expression of the myosin heavy chain (MHC), MyoD, myogenin, Myf-5, and MRF4 proteins was examined by immunocytochemistry in cultures of four distinct types of mouse myogenic cells: somitic (E8.5), embryonic (E11.5), fetal (E16.5) and newborn limb. In embryonic, fetal and newborn cultures, the MRF proteins were expressed in generally similar patterns: MyoD was the first MRF expressed; MyoD and myogenin were expressed by more cells than Myf-5 or MRF4; and each of the four MRFs was found both in cells that expressed MHC and in cells that did not express MHC. In cultures of somitic cells, in contrast, Myf-5 was expressed first and by more cells than MyoD or myogenin; MRF4 was not detected; and the MRFs were never found to be coexpressed with MHC in the same cell. Thus, some somitic cells had the unexpect...
The expression of myosin genes in developing skeletal muscle in the mouse embryo
The Journal of Cell Biology, 1990
Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, an...
Spatial and Temporal Changes in Myosin Heavy Chain Gene Expression in Skeletal Muscle Development
Developmental Biology, 1999
Seven myosin heavy chains (MyHC) are expressed in mammalian skeletal muscle in spatially and temporally regulated patterns. The timing, distribution, and quantitation of MyHC expression during development and early postnatal life of the mouse are reported here. The three adult fast MyHC RNAs (IIa, IIb, and IId/x) are expressed in the mouse embryo and each mRNA has a distinct temporal and spatial distribution. In situ hybridization analysis demonstrates expression of IIb mRNA by 14.5 dpc, which proceeds developmentally in a rostral to caudal pattern. IId/x and IIa mRNAs are detectable 2 days later. Ribonuclease protection assays demonstrate that the three adult fast genes are expressed at approximately equal levels relative to each other in the embryo but at quite low levels relative to the two developmental isoforms, embryonic and perinatal. Just after birth major changes in the relative proportions of different MyHC RNAs and protein occur. In all cases, RNA expression and protein expression appear coincident. The changes in MyHC RNA and protein expression are distinct in different muscles and are restricted in some cases to particular regions of the muscle and do not always reflect their distribution in the adult.
Developmental Biology, 1982
Three myosin heavy chain isoforms with unique peptide maps appear sequentially in the development of the chicken pectoralis major muscle. An embryonic isoform is expressed early and throughout development in the embryo. A second isoform appears just after hatching and predominates by 10 days er ovo. A third isoform, indistinguishable from adult myosin heavy chain, predominates by 8 weeks after hatching. This sequence of myosin isoform change does not, however, appear during myogenesis in vitro. In cultures prepared from embryonic myoblasts only embryonic myosin heavy chain is expressed. This is true even in cultures maintained for 30 days. Myosin light chain expression also changes in vivo with a progressive increase in fast light chain 3 accumulation. In vitro, however, this shift to increasing fast light chain 3 accumulation does not occur. The results indicate that the myosin heavy chain and light chain pattern observed in vitro is identical to that of the embryonic muscle and that the conditions necessary for the shift in expression to a more mature myosin phenotype are not present in myogenic cultures. These cultures are therefore potentially of great value in probing further the neural and humoral determinants of muscle fiber maturation and growth.