A novel piezoelectric immunosensor for the detection of malarial Plasmodium falciparum histidine rich protein-2 antigen (original) (raw)
Related papers
Journal of Clinical Microbiology, 2008
A disposable amperometric immunosensor was developed for the detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP-2) in the sera of humans with P. falciparum malaria. For this purpose, disposable screen-printed electrodes (SPEs) were modified with multiwall carbon nanotubes (MWCNTs) and Au nanoparticles. The electrodes were characterized by cyclic voltammetry, scanning electron microscopy, and Raman spectroscopy. In order to study the immunosensing performances of modified electrodes, a rabbit anti-PfHRP-2 antibody (as the capturing antibody) was first immobilized on an electrode. Further, the electrode was exposed to a mouse anti-PfHRP-2 antibody from a serum sample (as the revealing antibody), followed by a rabbit anti-mouse immunoglobulin G-alkaline phosphatase conjugate. The immunosensing experiments were performed on bare SPEs, MWCNT-modified SPEs, and Au nanoparticle-and MWCNT-modified SPEs (Nano-Au/MWCNT/SPEs) for the amperometric detection of PfHRP-2 in a solution of 0.1 M diethanolamine buffer, pH 9.8, by applying a potential of 450 mV at the working electrode. Nano-Au/MWCNT/SPEs yielded the highest-level immunosensing performance among the electrodes, with a detection limit of 8 ng/ml. The analytical results of immunosensing experiments with human serum samples were compared with the results of a commercial Paracheck Pf test, as well as the results of microscopy. The specificities, sensitivities, and positive and negative predictive values of the Paracheck Pf and amperometric immunosensors were calculated by taking the microscopy results as the "gold standard." The Paracheck Pf kit exhibited a sensitivity of 79% (detecting 34 of 43 positive samples; 95% confidence interval [CI], 75 to 86%) and a specificity of 81% (correctly identifying 57 of 70 negative samples; 95% CI, 76 to 92%), whereas the developed amperometric immunosensor showed a sensitivity of 96% (detecting 41 of 43 positive samples; 95% CI, 93 to 98%) and a specificity of 94% (correctly identifying 66 of 70 negative samples; 95% CI, 92 to 99%). The developed method is more sensitive and specific than the Paracheck Pf kit.
Journal of Clinical Microbiology, 2008
A disposable amperometric immunosensor was developed for the detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP-2) in the sera of humans with P. falciparum malaria. For this purpose, disposable screen-printed electrodes (SPEs) were modified with multiwall carbon nanotubes (MWCNTs) and Au nanoparticles. The electrodes were characterized by cyclic voltammetry, scanning electron microscopy, and Raman spectroscopy. In order to study the immunosensing performances of modified electrodes, a rabbit anti-PfHRP-2 antibody (as the capturing antibody) was first immobilized on an electrode. Further, the electrode was exposed to a mouse anti-PfHRP-2 antibody from a serum sample (as the revealing antibody), followed by a rabbit anti-mouse immunoglobulin G-alkaline phosphatase conjugate. The immunosensing experiments were performed on bare SPEs, MWCNT-modified SPEs, and Au nanoparticle-and MWCNT-modified SPEs (Nano-Au/MWCNT/SPEs) for the amperometric detection of PfHRP-2 in a solution of 0.1 M diethanolamine buffer, pH 9.8, by applying a potential of 450 mV at the working electrode. Nano-Au/MWCNT/SPEs yielded the highest-level immunosensing performance among the electrodes, with a detection limit of 8 ng/ml. The analytical results of immunosensing experiments with human serum samples were compared with the results of a commercial Paracheck Pf test, as well as the results of microscopy. The specificities, sensitivities, and positive and negative predictive values of the Paracheck Pf and amperometric immunosensors were calculated by taking the microscopy results as the "gold standard." The Paracheck Pf kit exhibited a sensitivity of 79% (detecting 34 of 43 positive samples; 95% confidence interval [CI], 75 to 86%) and a specificity of 81% (correctly identifying 57 of 70 negative samples; 95% CI, 76 to 92%), whereas the developed amperometric immunosensor showed a sensitivity of 96% (detecting 41 of 43 positive samples; 95% CI, 93 to 98%) and a specificity of 94% (correctly identifying 66 of 70 negative samples; 95% CI, 92 to 99%). The developed method is more sensitive and specific than the Paracheck Pf kit.
Analytica Chimica Acta, 2005
A novel piezoelectric immunosensor based on mixed self-assembled monolayers (mixed SAMs) formed by short-chain amine-and carboxylterminated thiols has been developed to immobilize antigens onto gold electrodes for detecting antisperm antibody (AsAb) in human serum samples. The properties and the enhanced performance of the affinity biosensor interface based on mixed SAMs are investigated. Most importantly, analytical results of several human serum samples using the developed technique are in satisfactory agreement with those given by the enzyme-linked immunosorbent assay (ELISA) method in the concentration ranging from 32.3 to 300.0 mU/ml. It means the procedure proposed in this paper is likely to have a great potential in research and may play an important clinical role in a few years later.
Scientific Reports
Malaria elimination is a global public health priority. To fulfil the demands of elimination diagnostics, we have developed an interdigitated electrode sensor platform targeting the Plasmodium falciparum Histidine Rich Protein 2 (PfHRP2) protein in saliva samples. A protocol for frequency-specific PfHRP2 detection in phosphate buffered saline was developed, yielding a sensitivity of 2.5 pg/mL based on change in impedance magnitude of the sensor. This protocol was adapted and optimized for use in saliva with a sensitivity of 25 pg/mL based on change in resistance. Further validation demonstrated detection in saliva spiked with PfHRP2 from clinical isolates in 8 of 11 samples. With a turnaround time of ~2 hours, the label-free platform based on impedance sensors has the potential for miniaturization into a point-of-care diagnostic device for malaria elimination.
Biosensors and Bioelectronics, 2017
Sensitive detection of specific antibodies by biosensors has become of major importance for monitoring and controlling epidemics. Here we report a development of a biosensor able to specifically measure antibodies in a drop of unmodified blood serum. Within minutes, the detection system measures presence of antibodies against Plasmodium vivax, a causing agent for malaria. The biosensor consists of of a layer of carbon nanotubes (CNTs) which were casted on a carbon working electrode area of a three-electrode system and oxidized. An amine layer was produced next by modifying the surface with EDAC/NHS followed by reaction with a diamine compound. Finally, the protein fragments derived from P. vivax containing well-known antigen sequences were casted on this layer and bound through electrostatic interactions, involving hydrogen and ionic bonding. All these chemical changes occurring at the carbon surface along the biosensor assembly were followed and confirmed by Fourier Transformed Infrared s pectrometry (FTIR) and Raman spectroscopy. The presence of antibodies in serum was detected by monitoring the electrical properties of the layer, making use of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), against a standard iron probe. Overall, the charge-transfer resistance decreased after antibody binding, because there was an additional amount of protein bound to the surface. This hindered the access of the iron redox probe to the conductive support at the electrode surface. Electrical changes could be measured at antibody concentration as low as ~6-50 pg/L (concentrations in the range of 10-15 M) and as high as ~70 g/L. Specific measurement with low background was even possible in undiluted serum. Hence, this novel biosensor allows assessing serum antibody levels in real time and in un-manipulated serum samples on-site where needed.
Recent Advances in the Development of Biosensors for Malaria Diagnosis
Sensors
The impact of malaria on global health has continually prompted the need to develop more effective diagnostic strategies that could overcome deficiencies in accurate and early detection. In this review, we examine the various biosensor-based methods for malaria diagnostic biomarkers, namely; Plasmodium falciparum histidine-rich protein 2 (PfHRP-2), parasite lactate dehydrogenase (pLDH), aldolase, glutamate dehydrogenase (GDH), and the biocrystal hemozoin. The models that demonstrate a potential for field application have been discussed, looking at the fabrication and analytical performance characteristics, including (but not exclusively limited to): response time, sensitivity, detection limit, linear range, and storage stability, which are first summarized in a tabular form and then described in detail. The conclusion summarizes the state-of-the-art technologies applied in the field, the current challenges and the emerging prospects for malaria biosensors.
Development of an Immunosensor for Pf HRP 2 as a Biomarker for Malaria Detection
Plasmodium falciparum histidine-rich protein 2 (Pf HRP 2) was selected in this work as the biomarker for the detection and diagnosis of malaria. An enzyme-linked immunosorbent assay (ELISA) was first developed to evaluate the immunoreagent's suitability for the sensor's development. A gold-based sensor with an integrated counter and an Ag/AgCl reference electrode was first selected and characterised and then used to develop the immunosensor for Pf HRP 2, which enables a low cost, easy to use, and sensitive biosensor for malaria diagnosis. The sensor was applied to immobilise the anti-Pf HRP 2 monoclonal antibody as the capture receptor. A sandwich ELISA assay format was constructed using horseradish peroxidase (HRP) as the enzyme label, and the electrochemical signal was generated using a 3, 3 , 5, 5 tetramethyl-benzidine dihydrochloride (TMB)/H 2 O 2 system. The performance of the assay and the sensor were optimised and characterised, achieving a PfHRP 2 limit of detection (LOD) of 2.14 ng·mL −1 in buffer samples and 2.95 ng·mL −1 in 100% spiked serum samples. The assay signal was then amplified using gold nanoparticles conjugated detection antibody-enzyme and a detection limit of 36 pg·mL −1 was achieved in buffer samples and 40 pg·mL −1 in serum samples. This sensor format is ideal for malaria detection and on-site analysis as a point-of-care device (POC) in resource-limited settings where the implementation of malaria diagnostics is essential in control and elimination efforts.
Journal of Materials Science: Materials in Medicine, 2011
Self-assembled monolayers (SAMs) on coinage metallic material can provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition and other interfacial phenomena. Recently, a bio-sensing system has been produced by analysis of the attachment of antibody using alkanethiols, to form SAMs on the face of Au-quartz crystal microbalance (QCM) surfaces. In this study, the attachment of anti-afetoprotein monoclonal antibody to a SAMs surface of 11-mercaptoundecanoic acid was achieved using watersoluble N-ethyl-N 0 -(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide as coupling agents. Surface analyses were utilized by X-ray photoelectron spectroscopy and atomic force microscopy. The quantization of immobilized antibody was characterized by the frequency shift of QCM and the radioactivity change of 125 I labeled antibody. The limit of detection and linear range of the calibration curve of the QCM method were 15 ng/ml and 15-850 ng/ml. The correlation coefficients of a-fetoprotein concentration between QCM and radioimmunoassay were 0.9903 and 0.9750 for the standards and serum samples, respectively. This report illustrates an investigation of SAMs for the preparation of covalently immobilized antibody biosensors.
Surface modifications for the development of piezoimmunosensors
Biosensors and Bioelectronics, 1998
Four different techniques for the immobilisation of proteins onto the gold electrode of a piezoelectric quartz crystal were investigated. The examined techniques were adsorption, avidin-biotin binding and two different types of covalent binding on self-assembled monolayers (SAM), dithiobis(succinimidylpropionate) (DSP) and a dextran modified thiol monolayer. The reaction of the immobilised proteins (bovine serum albumin (BSA) and anti-human IgG) with their specific antibodies, anti-BSA and hlgG (50 and 200 ~g/ml) were studied using a quartz crystal microbalance and then compared. Many cycles of measurements were performed on the same crystal regenerating the gold surface with a solution of glycine-HCl, 100 raM, pH 2.1. The interactions of the immobilised reagents with non-specific antibodies were also studied. The adsorption protocol was the quickest, but did not allow regeneration with glycine.HCl. Thiol-dextran coated surfaces did not show any detectable response to non-specific reagents, but needed a very long and complicated protocol. DSP and avidin-biotin coating procedures were easy and not too long. They seemed to have the best characteristics of reproducibility among different crystals and possibility of regeneration of the coated surface, but the percentage of non-specific binding was high.
A label-free electrochemical quartz crystal microbalance (EQCM) based immunosensor using selfassembled monolayer of hexandithiol (HDT), cysteamine and 3D gold nanoparticles (AuNPs) was fabricated and utilized for aflatoxin B1 (AFB1, food mycotoxin) detection. The morphology, bonding and optimized experimental conditions of fabricated electrode and immunoelectrode were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and electrochemical quartz crystal microbalance cyclic voltammetry (EQCM-CV) techniques. This novel Cys/AuNPs/HDT/Au platform was utilized for covalent immobilization of aAFB1. The two linear ranges are observed under optimized experimental conditions i.e. 0.008-0.3 ng mL −1 and 1-10 ng mL −1 that can be used to estimate AFB1 with high sensitivity of 126 A ng −1 mL cm −2 and low detection limit of 8 pg mL −1 using EQCM-CV. The label free AFB1 detection in noncompetitive mode with high sensitivity and wide linear range is assigned to the presence of antibodies and networking of 3D AuNPs on self assembled HDT monolayer. Attempts have also been made to utilize the immnunosensor for detection of AFB1 in spiked corn flakes samples for validating the observed results.