A comparison of two different types of shoreline boundary conditions (original) (raw)
Abstract
Two different types of shoreline boundary conditions which can be used in either wave-resolving or wave-averaging models of waves and currents propagation in the nearshore are compared here. The two techniques are essentially different: in the first case the velocity of the shoreline is obtained by the momentum equation and the shoreline position is tracked by changing the grid position, while in the other case the velocity of the shoreline is obtained by a modified Riemann solver and the shoreline is defined as an interface between dry and wet fixed grid points. A number of test cases are described to compare the performance of the two techniques. (M. Brocchini). 0045-7825/02/$ -see front matter Ó 2002 Elsevier Science B.V. All rights reserved. PII: S 0 0 4 5 -7 8 2 5 ( 0 2 ) 0 0 3 9 2 -4
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (37)
- T.E. Baldock, P. Holmes, D.P. Horn, Low frequency swash motion induced by wave grouping, Coast. Engrg. 32 (1997) 197-222.
- A. Balzano, Evaluation of methods for numerical simulation of wetting and drying water flow models, Coast. Engrg. 34 (1998) 83- 107.
- G. Bellotti, M. Brocchini, On the shoreline boundary conditions for Boussinesq-type models, Int. J. Numer. Meth. Fl. 37 (2001) 479-500.
- M. Brocchini, D.H. Peregrine, Integral flow properties of the swash zone and averaging, J. Fluid Mech. 317 (1996) 241-273.
- M. Brocchini, R. Bernetti, A. Mancinelli, G. Albertini, An efficient solver for nearshore flows based on the WAF method, Coast. Engrg. 43 (2001) 105-129.
- M. Brocchini, G. Bellotti, Integral flow properties of the swash zone and averaging. Part 2. The shoreline boundary conditions for wave-averaged models, J. Fluid Mech. 458 (2002) 269-281.
- J. Boussinesq, Th e eorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal en communiquant au liquide contenu dans ce canal des vitesse sensiblement pareilles de la surface au fond, Joun. de Mathematiques Pures et Applic e ees Deuzi e eme S e erie 17 (1872) 55-108.
- G.F. Carrier, Gravity waves on water of variable depth, J. Fluid Mech. 24 (1966) 641-659.
- G.F. Carrier, Dynamics of tsunamis, in: W.H. Reid (Ed.), Mathematical Problems in the Geophysical Sciences. vol.1: Geophysical Fluid Dynamics, American Mathematical Society, Providence, RI, 1971.
- G.F. Carrier, H.P. Greenspan, Water waves of finite amplitude on a sloping beach, J. Fluid Mech. 4 (1958) 97-109.
- N. Dodd, Numerical model of wave run-up overtopping and regeneration, J.W.P.C.O.E.--ASCE 124 (1998) 73-81.
- T.C. Gopalakrishnan, C.C. Tung, Numerical analysis of a moving boundary problem in coastal hydrodynamics, Int. J. Numer. Meth. Fl. 3 (1983) 179-200.
- S. Hibberd, D.H. Peregrine, Surf and run-up on a beach: a uniform bore, J. Fluid Mech. 95 (1979) 323-345.
- P. Jamet, R. Bonnerot, Numerical solution of the eulerian equations of compressible flow by finite element method which follows the free boundary and the interfaces, J. Comput. Phys. 18 (1975) 21-45.
- B. Johns, Numerical integration of the shallow water equations over a sloping shelf, Int. J. Numer. Meth. Fl. 2 (1982) 253-261.
- N. Kobayashi, A.K. Otta, I. Roy, Wave reflection and run-up on rough slopes, J. Waterways Port Coastal and Ocean Engineering--ASCE 113 (3) (1987) 282-298.
- J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge, 1978.
- P.L.-F. Liu, Y.-S. Cho, M.J. Briggs, U.K. Lu, C.E. Synolakis, Runup if solitary waves on a circular island, J. Fluid Mech. 302 (1995) 259-285.
- D.R. Lynch, W.G. Gray, Finite element simulation of flow in deforming regions, J. Comput. Phys. 36 (1980) 135-153.
- P.A. Madsen, H.A. Sørensen, H.A. Sch€ a affer, Surf zone dynamics simulated by a Boussinesq-type model. Part I. Model description and cross-shore motion of regular waves, Coast. Engrg. 32 (1997) 255-287.
- A. Militello, Hydrodynamics of wind-dominated, shallow embayments, Ph.D. Thesis, Florida Institute of Technology, USA, 1998.
- H. Mase, Frequency down-shift on swash oscillations compared to incident waves, J. Hydr. Res. 33 (1995) 397-411.
- H.T. € O Ozkan-Haller, J.T. Kirby, Nonlinear evolution of the shear instabilities of the longshore current, J. Geophys. Res. 104 (1997) 25953-25984.
- G. Pedersen, B. Gjevik, Run-up of solitary waves, J. Fluid Mech. 135 (1983) 283-299.
- D.H. Peregrine, Long waves on a beach, J. Fluid Mech. 27 (1967) 815-827.
- J.A. Puleo, R.A. Beach, R.A. Holman, J.S. Allen, Swash zone sediment suspension and transport and the importance of bore- generated turbulence, J. Geophys. Res. 105 (2000) 17021-17044.
- F. Shi, W. Sun, A variable boundary model of storm surge flooding in generalized curvilinear grids, Int. J. Numer. Meth. Fl. 21 (1995) 641-651.
- A. Sielecki, M. Wurtele, The numerical integration of the non-linear shallow water equations with sloping boundaries, J. Comp. Phys. 6 (1970) 219-236.
- J.J. Stoker, Water Waves, Interscience, New York, 1957.
- I.A. Svendsen, U. Putrevu, Nearshore mixing and dispersion, Proc. Roy. Soc. Lond. A 445 (1994) 561-576.
- C.E. Synolakis, The run-up of solitary waves, J. Fluid Mech. 185 (1987) 523-555.
- E.F. Toro, The weighted average flux method applied to the time-dependent Euler equation, Phil. Trans. Roy. Soc. Lond. A 341 (1992) 499-530.
- E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 1997.
- E.B. Thornton, S. Abdelrahman, Sediment transport in the swash due to obliquely incident wind-waves modulated by infragravity waves, in: Proc. Coastal Sed.'91, 1991, pp. 100-113.
- A. VanDongeren, I.A. Svendsen, Nonlinear and 3D effects in leaky infragravity waves, Coast. Engrg. 41 (2000) 467-496.
- G. Watson, D.H. Peregrine, E.F. Toro, Numerical solution of the shallow-water equations on a beach using the weighted average flux method, in: C. Hirsh et al. (Ed.), Computational Fluid Dynamics'92, 1992.
- J.A. Zelt, F. Raichlen, A lagrangian model for wave-induced harbor oscillations, J. Fluid Mech. 213 (1990) 203-225.