Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid (original) (raw)
Related papers
Open biology, 2012
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibit...
Journal of Biological Chemistry, 2012
Background: Fusidic acid-resistant EF-G mutants of Staphylococcus aureus show fitness loss and compensation. Results: Slower translocation and ribosome recycling from restricted conformational change, plus increased tRNA drop-off, cause fitness loss in F88L, which are recovered in F88L/M16I, leading to fitness compensation. Conclusion: Conformational dynamics of EF-G is crucial for function. Significance: This work clarifies how antibiotic-resistant mutations affect in vivo fitness.
Mechanisms of Resistance to an Amino Acid Antibiotic That Targets Translation
ACS Chemical Biology, 2007
Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 μM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA Lys aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased ~50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wildtype L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.
Nucleic Acids Research, 2016
The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.
Trans-Translation Is an Appealing Target for the Development of New Antimicrobial Compounds
Microorganisms, 2021
Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell’s energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3′-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and b...
Proceedings of the National Academy of Sciences of the United States of America, 2016
Mutations conferring resistance to translation inhibitors often alter the structure of rRNA. Reduced susceptibility to distinct structural antibiotic classes may, therefore, emerge when a common ribosomal binding site is perturbed, which significantly reduces the clinical utility of these agents. The translation inhibitors negamycin and tetracycline interfere with tRNA binding to the aminoacyl-tRNA site on the small 30S ribosomal subunit. However, two negamycin resistance mutations display unexpected differential antibiotic susceptibility profiles. Mutant U1060A in 16S Escherichia coli rRNA is resistant to both antibiotics, whereas mutant U1052G is simultaneously resistant to negamycin and hypersusceptible to tetracycline. Using a combination of microbiological, biochemical, single-molecule fluorescence transfer experiments, and X-ray crystallography, we define the specific structural defects in the U1052G mutant 70S E. coli ribosome that explain its divergent negamycin and tetracyc...
Nucleic Acids Research, 2016
With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac7 1-35 , oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac7 1-35 , Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibioticbinding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics.
Role of antibiotic ligand in nascent peptide-dependent ribosome stalling
Proceedings of the National Academy of Sciences, 2011
Specific nascent peptides in the ribosome exit tunnel can elicit translation arrest. Such ribosome stalling is used for regulation of expression of some bacterial and eukaryotic genes. The stalling is sensitive to additional cellular cues, most commonly the binding of specific small-molecular-weight cofactors to the ribosome. The role of cofactors in programmed translation arrest is unknown. By analyzing nascent peptide- and antibiotic-dependent ribosome stalling that controls inducible expression of antibiotic resistance genes in bacteria, we have found that the antibiotic is directly recognized as a part of the translation modulating signal. Even minute structural alterations preclude it from assisting in ribosome stalling, indicating the importance of precise molecular interactions of the drug with the ribosome. One of the sensors that monitor the structure of the antibiotic is the 23S rRNA residue C2610, whose mutation reduces the efficiency of nascent peptide- and antibiotic-de...