Completion of a hospital-wide comprehensive image management and communication system (original) (raw)

1989, Society of Photo- …

A comprehensive image management and communication (IMAC) network has been installed at Georgetown University Hospital for an extensive clinical evaluation. The network is based on the AT &T CommView system and it includes interfaces to 12 imaging devices, 15 workstations (inside and outside of the radiology department), a teleradiology link to an imaging center, an optical jukebox and a number of advanced image display and processing systems such as Sun workstations, PIXAR, and PIXEL. Details of network configuration and its role in the evaluation project are discussed. 1.0 INTROpUCTIOlY The management of the vast amounts of medical images and information generated by today's clinical services is a growing problem. The solution to the problem will increasingly require the use of advanced computer-based technologies U1I in data storage, image display and communication, and human engineering. The progress of individual technologies has been rapid; however, system integration and user acceptance have been slow in coming. Though the new imaging technologies have given the radiologist a powerful set of new diagnostic tools, the quality of radiology service has not experienced similar revolutionary improvements over the decade. In fact the use of many imaging modalities has imposed additional difficulties in managing films and data. New imaging systems have created a number of difficulties in managing radiology images and information because (a) they are often produced in physically distant locations, (b) images are presented in varying film formats, (c) radiology service is highly subspecialized and there is a greater need to review multimodality images, and (d) within large and complex medical care facilities there is an increasing number of competing demands for radiological images. It is generally accepted that the management of radiology images can be improved by using some computer based image system. However, opinions vary. What type of approach would be desirable? The possible solutions [2] will depend on such factors as the nature of radiology service, the types of images, and clinical workload. The use of computer based image management is becoming a major challenge and it is expected to generate a great deal of interest in the near future. How could this electronic technology enhance the quality and efficiency of radiology service? How should such technical capabilities be utilized to address the critical issues in a cost efficient way? Would the users, radiologists, and referring physicians embrace the use of this new technology? What kind of impact would IMAC technology have in the way that radiology service is performed. How should this technology be deployed to meet the combat casualty care needs of the Army? The project [3] at Georgetown University is designed to address these questions with close collaboration with a number of universities, government agencies, and military experts. While many specific technical issues involving display resolutions, image processing methods, and data compression techniques are an important part of the project, additional emphasis is placed on the system-wide issues of IMACS as an integral part of patient care.