Preparation of protein-loaded PLGA-PVP blend nanoparticles by nanoprecipitation method: entrapment, Initial burst and drug release kinetic studies (original) (raw)
Related papers
International Journal of Nanomedicine, 2008
Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release pro...
Journal of Nanomedicine & Nanotechnology, 2014
Nanoparticles of biocompatible and biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) are widely used as drug delivery systems for the administration of biomolecules like proteins. The purpose of this work is to validate a novel formulation method by a phase separation phenomenon using the non-toxic solvent glycofurol (GF) in order to encapsulate proteins into PLGA nanoparticles. Nanoprecipitates of a model protein (lysozyme) and a therapeutic protein (TGF-β1) were formed to ensure their stability upon subsequent encapsulation into PLGA nanoparticles. Good encapsulation efficiency was obtained with preservation of the structure integrity and protein bioactivity after encapsulation. PLGA nanoparticles were then characterized in terms of size, zeta potential and morphology. Moreover, residual solvent was quantified and in vitro release study of the encapsulated proteins was performed to demonstrate the efficacy of our encapsulation method in drug sustained release. Finally, cytocompatibility study of nanoparticles was performed. Thus, we developed an effective method based on the preliminary step of protein precipitation for the formulation of PLGA nanoparticles as protein carriers for biomedical applications.
Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles
International journal of pharmaceutics, 2008
We have used a systematic methodology to tailor the in vitro drug release profiles for a system of PLGA/PLA nanoparticles encapsulating a hydrophobic drug, haloperidol. We applied our previously developed sonication and homogenization methods to produce haloperidol-loaded PLGA/PLA nanoparticles with 200-1000 nm diameters and 0.2-2.5% drug content. The three important properties affecting release behavior were identified as: polymer hydrophobicity, particle size and particle coating. Increasing the polymer hydrophobicity reduces the initial burst and extends the period of release. Increasing the particle size reduces the initial burst and increases the rate of release. It was also shown that coating the particles with chitosan significantly reduces the initial burst without affecting other parts of the release profile. Various combinations of the above three properties were used to achieve in vitro release of drug over a period of 8, 25 and >40 days, with initial burst <25% and...
Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery
Polymer, 2015
Polymeric nanoparticles (PNPs) are emerging as promising carriers for controlled drug delivery. Poly(D,L-lactic-co-glycolic acid) (PLGA) is the most frequently used biodegradable and biocompatible polymer in the design nanoparticles for biomedical applications. Herein, we present PNPs prepared from the chemical modification of PLGA with sucrose and a cholic acid moieties (abbreviated as Suc-PLGA-Chol). The primary purpose was to study the influence of several processing parameters on particle size. The PNPs were prepared by nanoprecipitation and characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Under optimal experimental conditions, the prepared PNPs had a size of ca. 130 nm with a relatively narrow particle size distribution and a negative ζ-potential. The improvement of the freeze-drying process by the use of cryoprotectants was also studied. Drying of the PNPs under phosphorus pentoxide was explored as an alternative to lyophilization. Our research has
Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres
Results in Pharma Sciences, 2012
One of the first methods to encapsulate drugs within polymer nanospheres was developed by Fessi and coworkers in 1989 and consisted of one-step nanoprecipitation based on solvent displacement. However, proteins are poorly encapsulated within polymer nanoparticles using this method because of their limited solubility in organic solvents. To overcome this limitation, we developed a two-step nanoprecipitation method and encapsulated various proteins with high efficiency into poly(lactic-co-glycolic)acid (PLGA) nanospheres (NP). In this method, a protein nanoprecipitation step is used first followed by a second polymer nanoprecipitation step. Two model enzymes, lysozyme and α-chymotrypsin, were used for the optimization of the method. We obtained encapsulation efficiencies of >70%, an amount of buffer-insoluble protein aggregates of typically <2%, and a high residual activity of typically >90%. The optimum conditions identified for lysozyme were used to successfully encapsulate cytochrome c(Cyt-c), an apoptosis-initiating basic protein of similar size, to verify reproducibility of the encapsulation procedure. The size of the Cyt-c loaded-PLGA nanospheres was around 300-400 nm indicating the potential of the delivery system to passively target tumors. Cell viability studies, using a human cervical cancer cell line (HeLa), demonstrate excellent biocompatibility of the PLGA nanoparticles. PLGA nanoparticles carrying encapsulated Cyt-c were not efficient in causing apoptosis presumably because PLGA nanoparticles are not efficiently taken up by the cells. Future systems will have to be optimized to ascertain efficient cellular uptake of the nanoparticles by, e.g., surface modification with receptor ligands.
Polymer, 2013
The purpose of this study was to understand the impact of the poly (lactic-co-glycolic acid) (PLGA) molecular behavior in the feed solution on the drug release kinetics of PLGA microparticles prepared via spray drying. The PLGA molecular behavior in the feed solutions were characterized by using tube viscometry, which provides information about the polymer coil radius (R coil ), the Martin constant (K m ), and the overlap concentration (c*). The particle size and the drug surface enrichment were investigated by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The drug release profiles were characterized by using the USP paddle method and analyzed by using the Crank's diffusion model to calculate the kinetic parameters. Multivariate data analysis using principal component analysis (PCA) was employed to display the relationship between the PLGA molecular behavior, particle properties and the drug release kinetics from the spray dried PLGA microparticles. Rheological studies suggested that an increased molar ratio of a poor solvent (methanol) in the solvent system resulted in a decreased R coil , the increase in K m and c*. The higher effective diffusion coefficient of drug calculated by using the Crank's diffusion model was observed in the polymer matrix prepared at an acetone-to-methanol molar ratio of 69:31. The PCA models indicated that the drug surface enrichment and the K m were directly proportional to the drug burst release, while the entanglement index was inversely correlated. Further, the particle size had a less significant impact on the drug burst release. This study implies that the polymer molecular behavior would influence the microscopic connectivity and diffusivity of polymer matrix, which eventually affects the drug release kinetics.
Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design
International Journal of Pharmaceutics, 2010
The aim of this investigation was to screen and understand the product variability due to important factors affecting the characteristics CyA-PLGA nanoparticles prepared by O/W emulsification-solvent evaporation method. Independent variables studied were cyclosporine A (CyA) (X1), PLGA (X2), and emulsifier concentration namely SLS (X3), stirring rate (X4), type of organic solvent employed (chloroform or dichloromethane, X5) and organic to aqueous phase ratio (X6). The nanoparticles properties considered were encapsulation efficiency (Y1), mean particle size (Y2), zeta potential (Y3), burst effect (Y4) and dissolution efficiency (Y5). The statistical analysis of the results allowed determining the most influent factors. The nanoparticles were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The factors combination showed variability of entrapment efficiency (Y1), mean particle size (Y2) and zeta potential (Y3) from 10.17% to 93.01%, 41.60 to 372.80 nm and 29.60 to 34.90 mV, respectively. Initially, nanoparticles showed burst effect followed by sustained release during the 7-day in vitro release study period. The dissolution efficiency (Y5) varied from 52.67% to 84.11%. The nanoparticles revealed Higuchi release pattern and release occurred by coupling of diffusion and erosion. In conclusion, this study revealed the potential of QbD in understanding the effect of formulation and process variables on the characteristics on CyA-PLGA nanoparticles.
Different methods to determine the encapsulation efficiency of protein in PLGA nanoparticles
Bio-Medical Materials and Engineering, 2017
BACKGROUND: Effective encapsulation of drugs into the delivery systems could increase the efficiency of nanoparticles in prevention and treatment of diseases. OBJECTIVE: The purpose of this study was to compare the different methods for determination of encapsulation efficiency of a model protein in the PLGA nanoparticles. METHODS: The various direct methods include dichloromethane, acetonitrile, modified acetonitrile and NaOH based extraction and radioactive methods were used to directly calculate the encapsulation efficiency of the loaded protein in the PLGA nanoparticles. Furthermore, indirect methods include BCA, Fluorescent and radioactive methods were compared. RESULTS: The encapsulation efficiencies determined by indirect methods include dichloromethane, acetonitrile, modified acetonitrile, NaOH based extraction and radioactive methods were 12.
Preparation and in vitro release profiling of PLGA microspheres containing BSA as a model protein
Brazilian Journal of Pharmaceutical Sciences, 2020
Conventional drug formulations are incapable of adequate delivery of proteins and peptides for therapeutic purposes. As these molecules have very short biological half-life, multiple dosing is required to achieve the desirable therapeutic effects. Microspheres are able to encapsulate proteins and peptide in the polymeric matrix while protecting them from enzymatic degradation. In this study Bovine Serum Albumin (BSA) matrix type microspheres were fabricated using Polylactideco-glycolide (PLGA) by double emulsion solvent evaporation method. The effects of variables such as homogenizer speed, molecular weight of polymer and the effect of pH of the water phases, were investigated against factors such as drug loading, encapsulation efficiency, morphology, size, drug distribution and release profile of the microspheres. Results, suggested that an increase in homogenization speed leads to a decrease in microsphere size. The increase in homogenization speed also caused a significant effect on the release profile only when higher molecular weight of polymer had been used.. The pH change of the internal aqueous phase led to modification of surface morphology of spheres to a porous structure that significantly increased the total amount of released protein. Integrity of protein structure was intact as shown by SDS-PAGE. According to the results, it can be concluded that we achieved a reproducible method regarding controlled protein delivery for different sizes of particles.
Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications
Journal of Controlled Release, 2012
Polymer microspheres for controlled release of therapeutic protein from within an implantable scaffold were produced and analysed using complimentary techniques to probe the surface and bulk chemistry of the microspheres. Time of Flight -Secondary Ion Mass Spectrometry (ToF-SIMS) surface analysis revealed a thin discontinuous film of polyvinyl alcohol (PVA) surfactant (circa 4.5 nm thick) at the surface which was readily removed under sputtering with C 60 . Atomic Force Microscopy (AFM) imaging of microspheres before and after sputtering confirmed that the PVA layer was removed after sputtering revealing poly(lactic-co-glycolic) acid(PLGA). Scanning electron microscopy showed the spheres to be smooth with some shallow and generally circular depressions, often with pores in their central region. The occurrence of the protein at the surface was limited to areas surrounding these surface pores. This surface protein distribution is believed to be related to a burst release of the protein on dissolution. Analysis of the bulk properties of the microspheres by confocal Raman mapping revealed the 3D distribution of the protein showing large voids within the pores. Protein was found to be adsorbed at the interface with the PLGA oil phase following deposition on evaporation of the solvent. Protein was also observed concentrated within pores measuring approximately 2 μm across. The presence of protein in large voids and concentrated pores was further scrutinised by ToF-SIMS of sectioned microspheres. This paper demonstrates that important information for optimisation of such complex bioformulations, including an understanding of the release profile can be revealed by complementary surface and bulk analysis allowing optimisation of the therapeutic effect of such formulations.