A Software Framework for Tuning the Dynamics of Neuromorphic Silicon Towards Biology (original) (raw)
Related papers
Neuromorphic Silicon Neuron Circuits
Frontiers in Neuroscience, 2011
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
Compensating inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticity
2010
Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted configurability and production-related fluctuations of device characteristics. Since also future systems, involving ever-smaller structures, will inevitably exhibit such inhomogeneities on the unit level, self-regulation properties become a crucial requirement for their successful operation. By applying a cortically inspired self-adjusting network architecture, we show that the activity of generic spiking neural networks emulated on a neuromorphic hardware system can be kept within a biologically realistic firing regime and gain a remarkable robustness against transistorlevel variations. As a first approach of this kind in engineering practice, the short-term synaptic depression and facilitation mechanisms implemented within an analog VLSI model of I&F neurons are functionally utilized for the purpose of network level stabilization. We present experimental data acquired both from the hardware model and from comparative software simulations which prove the applicability of the employed paradigm to neuromorphic VLSI devices.
Biology-derived synaptic dynamics and optimized system architecture for neuromorphic hardware
2010
Neuromorphic circuits try to replicate aspects of the information processing in neural tissue. Historically, this has often meant some kind of long-term learning function which slowly adjusts the weight of a synapse to achieve a certain target network function. Recently, short-term dynamics at the synapse have also gained significant attention due to their role in dynamic and temporal information processing. However, only very few neuromorphic circuits have incorporated short term dynamics, with still fewer of these implementations being biologically realistic. We derive a circuit for biologically relevant short term dynamics, showing its accuracy with respect to biological measurements. Since this circuit significantly increases the overall complexity of the synapse, a direct integration in the synapse would be prohibitive. Thus, in addition to the short term dynamics, we also present a novel configurable topology for the neurons and synapses on chip which achieves a compact and flexible overall design while still augmenting all synapses with the new short term dynamics.
OSPEN: an open source platform for emulating neuromorphic hardware
International Journal of Reconfigurable and Embedded Systems (IJRES), 2023
This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).
A neuromorphic VLSI design for spike timing and rate based synaptic plasticity
Triplet-based Spike Timing Dependent Plasticity (TSTDP) is a powerful synaptic plasticity rule that acts beyond conventional pair-based STDP (PSTDP). Here, the TSTDP is capable of reproducing the outcomes from a variety of biological experiments, while the PSTDP rule fails to reproduce them. Additionally, it has been shown that the behaviour inherent to the spike rate-based Bienenstock–Cooper–Munro (BCM) synaptic plasticity rule can also emerge from the TSTDP rule. This paper proposes an analogue implementation of the TSTDP rule. The proposed VLSI circuit has been designed using the AMS 0.35 μm CMOS process and has been simulated using design kits for Synopsys and Cadence tools. Simulation results demonstrate how well the proposed circuit can alter synaptic weights according to the timing difference amongst a set of different patterns of spikes. Furthermore, the circuit is shown to give rise to a BCM-like learning rule, which is a rate-based rule. To mimic an implementation environment, a 1000 run Monte Carlo (MC) analysis was conducted on the proposed circuit. The presented MC simulation analysis and the simulation result from fine-tuned circuits show that it is possible to mitigate the effect of process variations in the proof of concept circuit; however, a practical variation aware design technique is required to promise a high circuit performance in a large scale neural network. We believe that the proposed design can play a significant role in future VLSI implementations of both spike timing and rate based neuromorphic learning systems.
Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI
IEEE Transactions on Biomedical Circuits and Systems, 2000
We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm 3 mm in 0.5 m CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.
Spike-Based Synaptic Plasticity in Silicon: Design, Implementation, Application, and Challenges
The ability to carry out signal processing, classification, recognition, and computation in artificial spiking neural networks (SNNs) is mediated by their synapses. In particular, through activity-dependent alteration of their efficacies, synapses play a fundamental role in learning. The mathematical prescriptions under which synapses modify their weights are termed synaptic plasticity rules. These learning rules can be based on abstract computational neuroscience models or on detailed biophysical ones. As these rules are being proposed and developed by experimental and computational neuroscientists, engineers strive to design and implement them in silicon and en masse in order to employ them in complex real-world applications. In this paper, we describe analog very large-scale integration (VLSI) circuit implementations of multiple synaptic plasticity rules, ranging from phenomenological ones (e.g., based on spike timing, mean firing rates, or both) to biophysically realistic ones (e.g., calcium-dependent models). We discuss the application domains, weaknesses, and strengths of various representative approaches proposed in the literature, and provide insight into the challenges that engineers face when designing and implementing synaptic plasticity rules in VLSI technology for utilizing them in real-world applications.
Programmable Spike-Timing Dependent Plasticity learning circuits in neuromorphic VLSI architectures
Hardware implementations of spiking neural networks offer promising solutions for computational tasks that require compact and low power computing technologies. As these solutions depend on both the specific network architecture and the type of learning algorithm used, it is important to develop spiking neural network devices that offer the possibility to reconfigure their network topology and to implement different types of learning mechanisms. Here we present a neuromorphic multi-neuron VLSI device with on-chip programmable event-based hybrid analog/digital circuits; the event-based nature of the input/output signals allow the use of Address-Event Representation infrastructures for configuring arbitrary network architectures, while the programmable synaptic efficacy circuits allow the implementation of different types of spike-based learning mechanisms. The main contributions of this paper are to demonstrate how the programmable neuromorphic system proposed can be configured to implement specific spike-based synaptic plasticity rules and to depict how it can be utilised in a cognitive task. Specifically, we explore the implementation of different Spike-Timing Plasticity learning rules on-line, in a hybrid system comprising a workstation and when the neuromorphic VLSI device interfaced to it, and we demonstrate how after training the VLSI device can perform, as a stand-alone component (i.e., without requiring a computer), binary classification of correlated patterns.
A VLSI neuromorphic device for implementing spike-based neural networks
2011
We present a neuromorphic VLSI device which comprises hybrid analog/digital circuits for implementing networks of spiking neurons. Each neuron integrates input currents from a row of multiple analog synaptic circuit. The synapses integrate incoming spikes, and produce output currents which have temporal dynamics analogous to those of biological post synaptic currents. The VLSI device can be used to implement real-time models of cortical networks, as well as real-time learning and classification tasks. We describe the chip architecture and the analog circuits used to implement the neurons and synapses. We describe the functionality of these circuits and present experimental results demonstrating the network level functionality.
Programmable neuromorphic circuits for spike-based neural dynamics
2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS), 2013
Hardware implementations of spiking neural networks offer promising solutions for a wide set of tasks, ranging from autonomous robotics to brain machine interfaces. We propose a set of programmable hybrid analog/digital neuromorphic circuits than can be used to build compact low-power neural processing systems. In particular, we present both CMOS and hybrid memristor/CMOS synaptic circuits that have programmable synaptic weights and exhibit biologically plausible response properties. For the CMOS circuits, we present experimental results demonstrating that they operate correctly over a wide range input frequencies; for the hybrid memristor/CMOS circuits we present circuit simulation results validating their expected response properties.