The bird GPS - long-range navigation in migrants (original) (raw)
Related papers
No evidence for the use of magnetic declination for migratory navigation in two songbird species
PLOS ONE, 2020
Determining the East-West position was a classical problem in human sea navigation until accurate clocks were manufactured and sailors were able to measure the difference between local time and a fixed reference to determine longitude. Experienced night-migratory songbirds can correct for East-West physical and virtual magnetic displacements to unknown locations. Migratory birds do not appear to possess a time-different clock sense; therefore, they must solve the longitude problem in a different way. We showed earlier that experienced adult (but not juvenile) Eurasian reed warblers (Acrocephalus scirpaceus) can use magnetic declination (the difference in direction between geographic and magnetic North) to solve this problem when they were virtually displaced from Rybachy on the eastern Baltic coast to Scotland. In this study, we aimed to test how general this effect was. Adult and juvenile European robins (Erithacus rubecula) and adult garden warblers (Sylvia borin) under the same experimental conditions did not respond to this virtual magnetic displacement, suggesting significant variation in how navigational maps are organised in different songbird migrants.
Orientation cues and mechanisms used during avian navigation: A review
Journal of Applied and Natural Science, 2021
The navigational systems of different animal species are by a wide margin less notable as compared to birds. Humans have been interested in how migratory birds discover their way more than thousands of miles for quite a long time. This review summarizes the cues and compass mechanisms applied in orientation and navigation by non-migrants, diurnal and nocturnal migrants. The magnetic compass, landmarks, olfactory, and memory of spatial cues en route were utilized in homing and migration. The equivalent is valid for the sun compass despite the fact that its job during migration might be undeniably less significant than commonly presumed. Stellar compass and celestial rotation, as a result of their nighttime accessibility, appear to influence the direction of nighttime migrants during the course of migration. The celestial cues go through notable changes because of the latitude shift during bird migration. Sunset cues alter their location with seasons and latitudes. The recognizable st...
The Neural Basis of Long-Distance Navigation in Birds
Annual review of physiology, 2015
Migratory birds can navigate over tens of thousands of kilometers with an accuracy unobtainable for human navigators. To do so, they use their brains. In this review, we address how birds sense navigation- and orientation-relevant cues and where in their brains each individual cue is processed. When little is currently known, we make educated predictions as to which brain regions could be involved. We ask where and how multisensory navigational information is integrated and suggest that the hippocampus could interact with structures that represent maps and compass information to compute and constantly control navigational goals and directions. We also suggest that the caudolateral nidopallium could be involved in weighing conflicting pieces of information against each other, making decisions, and helping the animal respond to unexpected situations. Considering the gaps in current knowledge, some of our suggestions may be wrong. However, our main aim is to stimulate further research ...
Evidence for a navigational map stretching across the continental US in a migratory songbird
Proceedings of the National Academy of Sciences of the United States of America, 2007
Billions of songbirds migrate several thousand kilometers from breeding to wintering grounds and are challenged with crossing ecological barriers and facing displacement by winds along the route. A satisfactory explanation of long-distance animal navigation is still lacking, partly because of limitations on field-based study. The navigational tasks faced by adults and juveniles differ fundamentally, because only adults migrate toward wintering grounds known from the previous year. Here, we show by radio tracking from small aircraft that only adult, and not juvenile, long-distance migrating white-crowned sparrows rapidly recognize and correct for a continent-wide displacement of 3,700 km from the west coast of North America to previously unvisited areas on the east coast. These results show that the learned navigational map used by adult long-distance migratory songbirds extends at least on a continental scale. The juveniles with less experience rely on their innate program to find their distant wintering areas and continue to migrate in the innate direction without correcting for displacement.
Migratory Eurasian Reed Warblers Can Use Magnetic Declination to Solve the Longitude Problem
Current Biology, 2017
The longitude problem (determining East-West position) is a classical problem in human sea navigation. Prior to the use of GPS satellites, extraordinarily accurate clocks measuring the difference between local time and a fixed reference (e.g., GMT) [1] were needed to determine longitude. Birds do not appear to possess a time-difference clock sense [2]. Nevertheless, experienced night-migratory songbirds can correct for East-West displacements to unknown locations [3-9]. Consequently, migratory birds must solve the longitude problem in a different way, but how they do so has remained a scientific mystery [10]. We suggest that experienced adult Eurasian reed warblers (Acrocephalus scirpaceus) can use magnetic declination to solve the longitude-problem at least under some circumstances under clear skies. Experienced migrants tested during autumn migration in Rybachy, Russia were exposed to an 8.5° change in declination while all other cues remained unchanged. This corresponds to a virtual magnetic displacement to Scotland if and only if magnetic declination is a part of their map. The adult migrants responded by changing their heading by 151° from WSW to ESE, consistent with compensation for the virtual magnetic displacement. Juvenile migrants that had not yet established a navigational map also oriented WSW at the capture site, but became randomly oriented when the magnetic declination was shifted 8.5°. In combination with latitudinal cues, which birds are known to detect and use [10-12], magnetic declination could provide the mostly east-west component for a true bi-coordinate navigation system under clear skies for experienced migratory birds in some areas of the globe.
A hierarchy of compass systems in migratory birds
Biological Communications, 2020
Migratory birds use several different sources of orientation information. They have at least three compass systems based on different cues: the sun and polarized light, the stars and their constellations, and the geomagnetic field. The concurrent information obtained from these three compasses is redundant, therefore the compasses need to have a hierarchy and must be calibrated relative to each other. One of the compasses should dominate the others, or some orientation cue should be used to calibrate the remaining compass systems. Results of experiments on a variety of songbird species demonstrate that while astronomical cues calibrate the magnetic compass during the pre-migratory period, strategies used during the migratory period are more diverse. In the present review, we analyze the results of all crucial cue-conflict studies, mostly performed in nocturnal songbird migrants; we also try to understand why some migratory species calibrate their magnetic compass on sunset cues whil...
Pigeons combine compass and landmark guidance in familiar route navigation
Proceedings of The National Academy of Sciences, 2007
How do birds orient over familiar terrain? In the best studied avian species, the homing pigeon (Columba livia), two apparently independent primary mechanisms are currently debated: either memorized visual landmarks provide homeward guidance directly, or birds rely on a compass to home from familiar locations. Using miniature Global Positioning System tracking technology and clock-shift procedures, we set sun-compass and landmark information in conflict, showing that experienced birds can accurately complete their memorized routes by using landmarks alone. Nevertheless, we also find that route following is often consistently offset in the expected compass direction, faithfully reproducing the shape of the track, but in parallel. Thus, we demonstrate conditions under which compass orientation and landmark guidance must be combined into a system of simultaneous or oscillating dual control.
Animal navigation: Birds as geometers?
Current Biology, 2000
New experiments on a bird species able to remember the sites of thousands of cached seeds have revealed how a site can be specified by combining distance information from several landmarks.