The Host Defense Peptide LL-37 Selectively Permeabilizes Apoptotic Leukocytes (original) (raw)

Secondary necrosis of apoptotic neutrophils induced by the human cathelicidin LL-37 is not proinflammatory to phagocytosing macrophages

Cytokine, 2009

Cathelicidins are CHDP with essential roles in innate host defense but also more recently associated with the pathogenesis of certain chronic diseases. These peptides have microbicidal potential and the capacity to modulate innate immunity and inflammatory processes. PMN are key innate immune effector cells with pivotal roles in defense against infection. The appropriate regulation of PMN function, death, and clearance is critical to innate immunity, and dysregulation is implicated in disease pathogenesis. The efferocytosis of apoptotic PMN, in contrast to necrotic cells, is proposed to promote the resolution of inflammation. We demonstrate that the human cathelicidin LL-37 induced rapid secondary necrosis of apoptotic human PMN and identify an essential minimal region of LL-37 required for this activity. Using these LL-37-induced secondary necrotic PMN, we characterize the consequence for macrophage inflammatory responses. LL-37-induced secondary necrosis did not inhibit PMN ingestion by monocyte-derived macrophages and in contrast to expectation, was not proinflammatory. Furthermore, the anti-inflammatory effects of apoptotic PMN on activated macrophages were retained and even potentiated after LL-37-induced secondary necrosis. However, this process of secondary necrosis did induce the release of potentially harmful PMN granule contents. Thus, we suggest that LL-37 can be a potent inducer of PMN secondary necrosis during inflammation without promoting macrophage inflammation but may mediate host damage through PMN granule content release un-der chronic or dysregulated conditions. J. Leukoc. Biol.

Impact of LL-37 on anti-infective immunity

Journal of Leukocyte Biology, 2004

Host defense peptides (often called cationic antimicrobial peptides) have pleiotropic immunomodulatory functions. The human host defense peptide LL-37 is up-regulated at sites of infection and has little or no antimicrobial activity in tissue-culture media but under the same conditions, demonstrates immunomodulatory effects on epithelial cells, monocytes, and dendritic cells (DC). These effects include the induction of chemokine production in a mitogen-activated protein kinase-dependent manner in epithelial cell lines and monocytes and profound alterations of DC differentiation, resulting in the capacity to enhance a T helper cell type 1 response. Although the exact mechanisms of interaction between LL-37 and these cell types have not been elucidated, there is evidence for specific (i.e., receptor-mediated) and nonspecific interactions. The relative significance of the direct antimicrobial activities and immunomodulatory properties of LL-37 and other cationic host defense peptides in host defense remains unresolved. To demonstrate that antimicrobial activity was not necessarily required for protection in vivo, model peptides were synthesized and tested for antimicrobial and immunomodulatory activities. A peptide with no antimicrobial activity was found to be protective in animal models of Staphylococcus aureus and Salmonella infection, implying that a host defense peptide can protect by exerting immunomodulatory properties. J. Leukoc. Biol. 77: 451-459; 2005.

Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses

The Journal of Immunology, 2011

The human cathelicidin peptide, LL-37, is a host defense peptide with a wide range of immunomodulatory activities and modest direct antimicrobial properties. LL-37 can exert both pro- and anti-inflammatory effects and can modulate the proinflammatory responses of human peripheral blood monocytes and epithelial cells. In this study, we evaluated the effect of LL-37 on mouse bone marrow-derived macrophages (BMDM) and tissue macrophages in vitro and in vivo. LL-37 dramatically reduced TNF-α and NO levels produced by LPS and IFN-γ–polarized M1-BMDM and slightly reduced reactive oxygen species production by these cells. LL-37 did not affect the ability of IL-4–polarized M2-BMDM to upregulate arginase activity, although it did inhibit LPS-induced TNF-α secretion in these cells. LL-37 did not compromise the ability of M1-polarized BMDM to phagocytose and kill bacteria and did not affect the uptake of apoptotic neutrophils by M2-polarized BMDM. However, LL-37-treated M1-BMDM were more effic...

The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses

The Journal of Immunology, 2002

The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNF␣. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.

Modulation of the TLR-Mediated Inflammatory Response by the Endogenous Human Host Defense Peptide LL-37

The Journal of Immunology, 2006

The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 (≤1 μg/ml) were able to modulate inflammatory responses by inhibiting the release of the proinflammatory cytokine TNF-α in LPS-stimulated human monocytic cells. Microarray studies established a temporal transcriptional profile and identified differentially expressed genes in LPS-stimulated monocytes in the presence or absence of LL-37. LL-37 significantly inhibited the expression of specific proinflammatory genes up-regulated by NF-κB in the presence of LPS, including NFκB1 (p105/p50) and TNF-α-induced protein 2 (TNFAIP2). In contrast, LL-37 did not significantly inhibit LPS-induced genes that antagonize inflammation, such as TNF-α-induced protein 3 (TNFAIP3) and the NF-κB inhibitor, NFκBIA, or certain chemokine genes that are classically considered proinflammatory. Nuclear translocation, in LPS-treated cells, of the NF-κB subuni...

Antimicrobial Cathelicidin Peptide LL-37 Inhibits the LPS/ATP-Induced Pyroptosis of Macrophages by Dual Mechanism

PLoS ONE, 2014

Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. Notably, human cathelicidin LL-37 exhibits the protective effect on the septic animal models. Thus, in this study, to elucidate the mechanism for the protective action of LL-37 on sepsis, we utilized LPS (lipopolysaccharide) and ATP (adenosine triphosphate) as a PAMP and a DAMP, respectively, and examined the effect of LL-37 on the LPS/ATP-induced pyroptosis of macrophage-like J774 cells. The data indicated that the stimulation of J774 cells with LPS and ATP induces the features of pyroptosis, including the expression of IL-1b mRNA and protein, activation of caspase-1, inflammasome formation and cell death. Moreover, LL-37 inhibits the LPS/ATP-induced IL-1b expression, caspase-1 activation, inflammasome formation, as well as cell death. Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X 7 -mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X 7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X 7 activation.

Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells

International Immunology, 2011

Sepsis is a systemic disease resulting from harmful host response to bacterial infections. During the exacerbation of severe sepsis or septic shock, apoptosis of endothelial cells is induced in susceptible organs such as the lung and liver and triggers microcirculatory disorder and organ dysfunction. LPS, an outer membrane component of Gram-negative bacteria, is one of the major virulence factors for the pathogenesis. We previously reported that LL-37, a human anti-microbial cathelicidin peptide, potently neutralizes the biological activity of LPS and protects mice from lethal endotoxin shock. However, the effect of LL-37 on the LPS-induced endothelial cell apoptosis remains to be clarified. In this study, to further elucidate the action of LL-37 on severe sepsis/endotoxin shock, we investigated the effects of LL-37 on the LPS-induced endothelial cell apoptosis in vitro and in vivo using lung-derived normal human microvascular blood vessel endothelial cells (HMVEC-LBls) and D-galactosamine hydrochloride (D-GalN)-sensitized murine endotoxin shock model. LL-37 suppressed the LPS-induced apoptosis of HMVEC-LBls. In addition, LL-37 inhibited the binding of LPS possibly to the LPS receptors (CD14 and toll-like receptor 4) expressed on the cells. Thus, LL-37 can suppress the LPS-induced apoptosis of HMVEC-LBls via the inhibition of LPS binding to the cells. Furthermore, LL-37 drastically suppressed the apoptosis of hepatic endothelial cells as well as hepatocytes in the liver of murine endotoxin shock model. Together, these observations suggest that LL-37 could suppress the LPS-induced apoptosis of endothelial cells, thereby attenuating lethal sepsis/endotoxin shock.

Citrullination Alters Immunomodulatory Function of LL-37 Essential for Prevention of Endotoxin-Induced Sepsis

The Journal of Immunology, 2014

Cathelicidin LL-37 plays an essential role in innate immunity by killing invading microorganisms and regulating the inflammatory response. These activities depend on the cationic character of the peptide, which is conferred by arginine and lysine residues. At inflammatory foci in vivo, LL-37 is exposed to peptidyl arginine deiminase (PAD), an enzyme released by inflammatory cells. Therefore, we hypothesized that PAD-mediated citrullination of the arginine residues within LL-37 will abrogate its immunomodulatory functions. We found that, when citrullinated, LL-37 was at least 40 times less efficient at neutralizing the proinflammatory activity of LPS due to a marked decrease in its affinity for endotoxin. Also, the ability of citrullinated LL-37 to quench macrophage responses to lipoteichoic acid and poly(I:C) signaling via TLR2 and TLR3, respectively, was significantly reduced. Furthermore, in stark contrast to native LL-37, the modified peptide completely lost the ability to preven...

Apoptosis of Airway Epithelial Cells

American Journal of Respiratory Cell and Molecular Biology, 2006

LL-37 is a human cationic host defense peptide that is present in the specific granules of neutrophils, produced by epithelial cells from a variety of tissues, and is upregulated during inflammation, infection, and injury. It has been proposed to have a variety of antimicrobial functions, including both direct antimicrobial activity and immunomodulatory functions. Using the TUNEL assay it was demonstrated that LL-37 induced apoptosis in vitro in the A549 human lung and 16HBE4o-human airway epithelial cell lines, and in vivo in the murine airway. Peptide-induced apoptosis in vitro involved the activation of caspase pathways and was substantially inhibited by an inhibitor of caspase 3. Apoptosis was also inhibited by human serum, but not fetal bovine serum. Similarly, human but not fetal bovine serum inhibited the cellular internalization of LL-37 and the production of IL-8 in response to LL-37 treatment of epithelial cells. The protective effects of human serum were also observed with high-density lipoproteins but not by the core peptide apolipoprotein A1, providing one possible mechanism of human serum inhibition of apoptosis. We propose that LL-37-induced apoptosis of epithelial cells at low serum tissue sites may have a protective role against bacterial infection.