Transient model of induction machine using rotating magnetic field approach (original) (raw)

2010, Mathematics and Computers in Simulation

Most simulation models of electric machines use the coupled circuit approach, where the machine is considered as an electric circuit element with time-varying inductances (abc model) or with constant inductances (dq0 model). On the other hand, the rotating magnetic field approach, which considers the electric machine as two groups of windings producing rotating magnetic fields and can give insight into internal phenomena of the machines, has not yet received much attention in electric machines modeling, especially for machine transient analysis. Based on the rotating magnetic field approach, this paper presents a transient model of the induction machine including main flux saturation effect. Based on the direct computation of the magnetizing fluxes of all machine windings, the model represents instantaneous main flux saturation by simply introducing a main flux saturation factor. No iteration process is involved to incorporate the saturation effects. The model combines the advantages of the dq0 and abc models advantages, such as rapid computation time and nonsymmetrical conditions simulation, respectively. The simulation results and the experimental tests show advantages and verification of the model.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact