On the measure problem in slow roll inflation and loop quantum cosmology (original) (raw)

Genericness of pre-inflationary dynamics and probability of the desired slow-roll inflation in modified loop quantum cosmologies

We study the evolution of spatially flat Friedmann-LemaƮtre-Robertson-Walker universe for chaotic and Starobinsky potentials in the framework of modified loop quantum cosmologies. These models result in a non-singular bounce as in loop quantum cosmology, but with far more complex modified Friedmann dynamics with higher order than quadratic terms in energy density. For the kinetic energy dominated bounce, we obtain analytical solutions using different approximations and compare with numerical evolution for various physical variables. The relative error turns out to be less than 0.3% in the bounce regime for both of the potentials. Generic features of dynamics, shared with loop quantum cosmology, are established using analytical and numerical solutions. Detailed properties of three distinct phases in dynamics separating bounce regime, transition stage and inflationary phase are studied. For the potential energy dominated bounce, we qualitatively describe its generic features and confirm by simulations that they all lead to the desired slow-roll phase in the chaotic inflation. However, in the Starobinsky potential, the potential energy dominated bounce cannot give rise to any inflationary phase. Finally, we compute the probability for the desired slow-roll inflation to occur in the chaotic inflation and as in loop quantum cosmology, find a very large probability for the universe to undergo inflation.

Observational constraints on warm inflation in loop quantum cosmology

Journal of Cosmology and Astroparticle Physics, 2019

By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General Relativity one. We investigate such modifications and explore the constraints imposed by the Cosmic Microwave Background (CMB) Planck Collaboration data on the Warm Inflation (WI) scenario in the LQC context. We obtain useful relations between the dissipative parameter of WI and the bounce scale parameter of LQC. We also find that the number of required e-folds of expansion from the bounce instant till the moment the observable scales crossed the Hubble radius during inflation can be smaller in WI than in CI. In particular, we find that this depends on how large is the dissipation in WI, with the amount of required e-folds decreasing with the increasing of the dissipation value. Furthermore, by performing a Monte Carlo Markov Chain anal...

On solutions of loop quantum cosmology

The European Physical Journal C, 2013

Loop quantum cosmology is considered in inflationary era. A slow rolling scalar field solution with power law potential is presented in the neighborhood of transition time, i.e. when the universe enters inflationary phase from super-inflation era. The second and the generalized second laws of thermodynamics and their validities and violations are discussed and elucidated through some examples.

Observational Constraints on Loop Quantum Cosmology

Physical Review Letters, 2011

In the inflationary scenario of loop quantum cosmology (LQC) in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to confront with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background (CMB) and other cosmological experiments, we place bounds on the quantum corrections for a quadratic inflaton potential. PACS numbers: 98.80.Cq, 04.60.Pp

Genericness of Inflation in Isotropic Loop Quantum Cosmology

Physical Review Letters, 2005

Non-perturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector is already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semi-definite potentials it is always possible to choose, without fine tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with generic occurrence of bounce at small volumes, particle horizon is absent thus eliminating the horizon problem of the standard Big Bang model. PACS numbers: 04.60.Pp, 04.60.Kz, 98.80.Jk The Standard Big Bang model so far is the most successful large scale description of our universe. In this description, the evolution of our universe begins from a singularity. Within the context of homogeneous and isotropic expanding space-times, the singularity is unavoidable as long as the matter satisfies the so called strong energy condition. The singularity in this context means that the scale factor (or size of the universe) vanishes a finite time ago. This vanishing size also implies that the energy density diverges at this time. Furthermore, the scale factor vanishes slower than linearly with the synchronous time making the conformal time integral finite thus implying the existence of particle horizon.

Inflationary observables in loop quantum cosmology

Journal of Cosmology and Astroparticle Physics, 2011

The full set of cosmological observables coming from linear scalar and tensor perturbations of loop quantum cosmology is computed in the presence of inverse-volume corrections. Background inflationary solutions are found at linear order in the quantum corrections; depending on the values of quantization parameters, they obey an exact or perturbed power-law expansion in conformal time. The comoving curvature perturbation is shown to be conserved at large scales, just as in the classical case. Its associated Mukhanov equation is obtained and solved. Combined with the results for tensor modes, this yields the scalar and tensor indices, their running, and the tensor-to-scalar ratio, which are all first order in the quantum correction. The latter could be sizable in phenomenological scenarios. Contrary to a pure minisuperspace parametrization, the lattice refinement parametrization is in agreement with both anomaly cancellation and our results on background solutions and linear perturbations. The issue of the choice of parametrization is also discussed in relation with a possible superluminal propagation of perturbative modes, and conclusions for quantum spacetime structure are drawn.

On a Continuum Limit for Loop Quantum Cosmology

2007

The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance is the study of Loop Quantum Cosmology (LQC), a symmetry reduced theory that is related to Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently, a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop Quantum Cosmology and the standard Wheeler-DeWitt theory and in particular the passage to the limit in which the auxiliary parameter (interpreted as "quantum geometry discreetness") is sent to zero in hope to get rid of this 'regulator ambiguity' in the LQC dynamics. In this note we outline the first steps toward reformulating this question within the program developed by the authors for studying the continuum limit of polymeric theories, which was successfully applied to simple systems such as a Simple Harmonic Oscillator and the Free Particle.

Inflationary Cosmology and Oscillating Universes in Loop Quantum Cosmology

International Journal of Modern Physics A, 2005

We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating universes can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.

The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations

Classical and Quantum Gravity, 2013

Using techniques from loop quantum gravity, the standard theory of cosmological perturbations was recently generalized to encompass the Planck era. We now apply this framework to explore pre-inflationary dynamics. The framework enables us to isolate and resolve the true trans-Planckian difficulties, with interesting lessons both for theory and observations. Specifically, for a large class of initial conditions at the bounce, we are led to a self consistent extension of the inflationary paradigm over the 11 orders of magnitude in density and curvature, from the big bounce to the onset of slow roll. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects-such as a modification of the consistency relation between the ratio of the tensor to scalar power spectrum and the tensor spectral index, as well as a new source for non-Gaussianities-which could extend the reach of cosmological observations to the deep Planck regime of the early universe.