First Integrals of Extended Hamiltonians in n+ 1 Dimensions Generated by Powers of an Operator⋆ (original) (raw)
Abstract
Abstract. We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians H obtained as one-dimensional extensions of natural (geodesic) n-dimensional Hamiltonians L. The Liouville integrability of L implies ...
Key takeaways
AI
- The paper presents a method for constructing polynomial first integrals for extended Hamiltonians in n + 1 dimensions.
- The extended Hamiltonians are shown to have n + 2 functionally independent first integrals under Liouville integrability conditions.
- Constant curvature of the underlying manifold is necessary for constructing additional first integrals U_m(G).
- The procedure does not require separability of the Hamiltonian systems, expanding applicability to non-separable cases.
- Examples illustrate the construction method for n = 1, 2, and 3, demonstrating superintegrability.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (17)
- Borisov A.V., Kilin A.A., Mamaev I.S., Multiparticle systems. The algebra of integrals and integrable cases, Regul. Chaotic Dyn. 14 (2009), 18-41.
- Borisov A.V., Kilin A.A., Mamaev I.S., Superintegrable system on a sphere with the integral of higher degree, Regul. Chaotic Dyn. 14 (2009), 615-620.
- Cariñena J.F., Rañada M.F., Santander M., Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere S 2 and the hyperbolic plane H 2 , J. Math. Phys. 46 (2005), 052702, 25 pages, math-ph/0504016.
- Chanu C., Degiovanni L., Rastelli G., Superintegrable three-body systems on the line, J. Math. Phys. 49 (2008), 112901, 10 pages, arXiv:0802.1353.
- Chanu C., Degiovanni L., Rastelli G., Polynomial constants of motion for Calogero-type systems in three dimensions, J. Math. Phys. 52 (2011), 032903, 7 pages, arXiv:1002.2735.
- Cochran C., McLenaghan R.G., Smirnov R.G., Equivalence problem for the orthogonal webs on the sphere, arXiv:1009.4244.
- Kalnins E.G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 28, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986.
- Kalnins E.G., Kress J.M., Miller W. Jr., Tools for verifying classical and quantum superintegrability, SIGMA 6 (2010), 066, 23 pages, arXiv:1006.0864.
- Kalnins E.G., Kress J.M., Miller W. Jr., Families of classical subgroup separable superintegrable systems, J. Phys. A: Math. Theor. 43 (2010), 092001, 8 pages, arXiv:0912.3158.
- Kalnins E.G., Kress J.M., Miller W. Jr., Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform, J. Math. Phys. 46 (2005), 053510, 15 pages.
- Kalnins E.G., Miller W. Jr., Pogosyan G.S., Superintegrability and higher order constants for classical and quantum systems, Phys. Atomic Nuclei, to appear, arxiv:0912.2278.
- Maciejewski A.J., Przybylska M., Yoshida H., Necessary conditions for super-integrability of a certain family of potentials in constant curvature spaces, J. Phys. A: Math. Theor. 43 (2010), 382001, 15 pages, arXiv:1004.3854.
- Rañada M.F., Santander M., Superintegrable systems on the two-dimensional sphere S 2 and the hyperbolic plane H 2 , J. Math. Phys. 40 (1999), 5026-5057.
- Sergyeyev A., Blaszak M., Generalized Stäckel transform and reciprocal transformations for finite- dimensional integrable systems, J. Phys. A: Math. Theor. 41 (2008), 105205, 20 pages, arXiv:0706.1473.
- Tremblay F., Turbiner V.A., Winternitz P., An infinite family of solvable and integrable quantum systems on a plane, J. Phys. A: Math. Theor. 42 (2009), 242001, 10 pages.
- Tremblay F., Turbiner A.V., Winternitz P., Periodic orbits for an infinite family of classical superintegrable systems, J. Phys. A: Math. Theor. 43 (2010), 015202, 14 pages, arXiv:0910.0299.
- Tsiganov A.V., Leonard Euler: addition theorems and superintegrable systems, Regul. Chaotic Dyn. 14 (2009), 389-406, arXiv:0810.1100.