Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease (original) (raw)

Melatonin as a Neuroprotective Agent in the Rodent Models of Parkinson’s Disease: Is it All Set to Irrefutable Clinical Translation?

Molecular Neurobiology, 2012

Parkinson's disease (PD), a neurodegenerative disorder, is characterized by the selective degeneration of the nigrostriatal dopaminergic neurons, continuing or permanent deficiency of dopamine, accretion of an abnormal form of alpha synuclein in the adjacent neurons, and dysregulation of ubiquitin proteasomal system, mitochondrial metabolism, permeability and integrity, and cellular apoptosis resulting in rigidity, bradykinesia, resting tremor, and postural instability. Melatonin, an indoleamine produced almost in all the organisms, has anti-inflammatory, anti-apoptotic, and anti-oxidant nature. Experimental studies employing 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), methamphetamine, rotenone, and maneb and paraquat models have shown an enormous potential of melatonin in amelioration of the symptomatic features of PD. Although a few reviews published previously have described the multifaceted efficacy of melatonin against MPTP and 6-OHDA rodent models, due to development and validation of the newer models as well as the extensive studies on the usage of melatonin in entrenched PD models, it is worthwhile to bring up to date note on the usage of melatonin as a neuroprotective agent in PD. This article presents an update on the usage and applications of melatonin in PD models along with incongruous observations. The impending implications in the clinics, success, limitations, and future prospective have also been discussed in this article.

Melatoninergic System in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms

Oxidative Medicine and Cellular Longevity, 2016

Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reducesα-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson’s disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1and MT2. Exogenous melatonin treatm...

Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: Implications for Parkinson's disease

Journal of Pineal Research, 1998

Abstract: It was recently reported that low doses of 6-hydroxydopamine (6-OHDA) induce apoptosis of naive (undifferentiated) and neuronal (differentiated) PC 12 cells, and this system has been proposed as an adequate experimental model for the study of Parkinson's disease. The mechanism by which this neurotoxin damages cells is via the production of free radicals. Given that the neurohormone melatonin has been reported 1) to be a highly effective endogenous free radical scavenger, 2) to increase the mRNA levels and the activity of several antioxidant enzymes, and 3) to inhibit apoptosis in other tissues, we have studied the ability of melatonin to prevent the programmed cell death induced by 6-OHDA in PC12 cells. We found that melatonin prevents the apoptosis caused by 6-OHDA in naive and neuronal PC12 cells as estimated by 1) cell viability assays, 2) counting of the number of apoptotic cells, and 3) analysis and quantification of DNA fragmentation. Exploration of the mechanisms used by melatonin to reduce programmed cell death revealed that this chemical mediator prevents the 6-OHDA induced reduction of mRNAs for several antioxidant enzymes. The possibility that melatonin utilized additional mechanisms to prevent apoptosis of these cells is also discussed. Since this endogenous agent has no known side effects and readily crosses the blood-brain-barrier, we consider melatonin to have a high clinical potential in the treatment of Parkinson's disease and possibly other neurodegenerative diseases, although more research on the mechanisms is yet to be done.

Melatonin and Parkinson's Disease

Endocrine, 2005

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is characterized by a progressive loss of dopamine in the substantia nigra and striatum. However, over 70% of dopaminergic neuronal death occurs before the first symptoms appear, which makes either early diagnosis or effective treatments extremely difficult. Only symptomatic therapies have been used, including levodopa (L-dopa), to restore dopamine content; however, the use of L-dopa leads to some long-term pro-oxidant damage. In addition to a few specific mutations, oxidative stress and generation of free radicals from both mitochondrial impairment and dopamine metabolism are considered to play critical roles in PD etiology. Thus, the use of antioxidants as an important co-treatment with traditional therapies for PD has been suggested. Melatonin, or N-acetyl-5-methoxy-tryptamine, an indole mainly produced in the pineal gland, has been shown to have potent endogenous antioxidant actions. Because neurodegenerative disorders are mainly caused by oxidative damage, melatonin has been tested successfully in both in vivo and in vitro models of PD. The present review provides an up-to-date account of the findings and mechanisms involved in neuroprotection of melatonin in PD.