CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight (original) (raw)

Abstract

We present a CMOS imager consisting of 32 × 32 smart pixels, each one able to detect single photons in the 300-900 nm wavelength range and to perform both photon-counting and photon-timing operations on very fast optical events with faint intensities. In photon-counting mode, the imager provides photonnumber (i.e., intensity) resolved movies of the scene under observation, up to 100 000 frames/s. In photon-timing, the imager provides photon arrival times with 312 ps resolution. The result are videos with either time-resolved (e.g., fluorescence) maps of a sample, or 3-D depth-resolved maps of a target scene. The imager is fabricated in a cost-effective 0.35-μm CMOS technology, automotive certified. Each pixel consists of a single-photon avalanche diode with 30 μm photoactive diameter, coupled to an in-pixel 10-bit time-to-digital converter with 320-ns full-scale range, an INL of 10% LSB and a DNL of 2% LSB. The chip operates in global shutter mode, with full frame times down to 10 μs and just 1-ns conversion time. The reconfigurable imager design enables a broad set of applications, like time-resolved spectroscopy, fluorescence lifetime imaging, diffusive optical tomography, molecular imaging, time-of-flight 3-D ranging and atmospheric layer sensing through LIDAR. Index Terms-Photon counting, CMOS imagers, single-photon avalanche diode (SPAD), 2-D imaging, 3-D ranging, time-of-flight, photon tagging, time-correlated single-photon counting (TCSPC), light detection and ranging (LIDAR).

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (37)

  1. M. E. Daube-Witherspoon, S. Matej, M. E. Werner, S. Surti, and J. S. Karp, "Comparison of list-mode and DIRECT approaches for time-of- flight PET reconstruction," in Proc. IEEE Nucl. Sci. Symp. Conf. Record., 2010, pp. 2252-2258.
  2. W. Becker, Advanced Time-Correlated Single Photon Counting Tech- niques. Berlin, Germany: Springer, 2005.
  3. M. Wahl. (2009). Time-correlated single photon counting. Tech. Note TC- SPC v. 2.1, PicoQuant GmbH. [Online]. Available: www.picoquant.com
  4. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, "A 128 × 128 single-photon imager with on-chip column-level 97 ps 10 bit time-to-digital-converter array," in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2008, pp. 44-494.
  5. C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, "A 100-m range 10-Frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18 μm CMOS," IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 559-572, Feb. 2013.
  6. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Char- bon, M. Gersbach, and R. K. Henderson, "A 32 × 32 50 ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging," in Proc. IEEE Custom Integr. Circuits Conf., Sep. 13-16, 2009, pp. 77-80.
  7. C. Veerappan, J. Richardson, R. Walker, D. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, "A 160 × 128 single-photon image sensor with on-pixel 55 ps 10 b time-to-digital converter," in Proc. IEEE Int. Solid-State Circuits Conf., 2011, pp. 312-314.
  8. M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker et al., "A parallel 32 × 32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology," in Proc. 35th Eur. Solid-State Circuits Conf., 2009, pp. 196-199.
  9. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli et al., "Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating," Phys. Rev. Lett., vol. 100, no. 13, p. 138101, 2008.
  10. B. F. Aull, J. C. Aversa, E. A. Dauler, J. P. Donnelly, E. K. Duerr, and J. P. Frechette, "Geiger-mode avalanche photodiodes for laser communications and laser radar," in Proc. Dig. LEOS Summer Top. Meet., 2006, pp. 1-2.
  11. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde, and U. Paschen, "CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm," J. Modern Opt., vol. 61, pp. 102-115, Jan. 2014.
  12. X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin et al., "Develop- ment of new photon-counting detectors for single-molecule fluorescence microscopy," Philosoph. Trans. B, vol. 368, no. 1611, pp. 1-22, Dec. 2012.
  13. K. Suhling, P. M. W. French, and D. Phillips, "Time-resolved fluorescence microscopy," Photochemical Photobiol. Sci., vol. 4, pp. 13-22, 2005.
  14. E. A. Jares-Erijman and T. M. Jovin, "FRET imaging," Nat. Biotechnol., vol. 21, pp. 1387-1395, 2002.
  15. L. V. Wang and H. I. Wu, "Diffuse optical tomography," Biomedical Optics: Principle and Measurements. Hoboken, NJ, USA: Wiley, 2007.
  16. S. Carrara, A. Cavallini, Y. Maruyama, E. Charbon, and G. De Micheli, "A new ethylene glycol-silane monolayer for highly-specific DNA detection on silicon chips," Surface Sci., vol. 604, pp. L71-L74, 2010.
  17. A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, "New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration," J. Modern Opt., vol. 59, no. 17, pp. 1489-1499, 2012.
  18. Excelitas Technologies, Photonic Detection, Single Photon Count- ing Modules (SPCM) [Online]. Available: http:www.excelitas.com/ Downloads/DTS_SPCM-AQRH.pdf
  19. Micro Photon Devices, Photon Detector Modules Red Enhanced (PDM-R) [Online]. Available: http:www.micro-photon-devices.com/ Docs/Datasheet/PDM-R.pdf
  20. Micro Photon Devices, Photon Detector Modules (PDM) [Online]. Avail- able: http:www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf
  21. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, "A low-noise single-photon detector implemented in a 130 nm CMOS imaging process," J. Solid- State Electron., vol. 53, pp. 803-808, 2009.
  22. J. A. Richardson, L. A. Grant, and R. K. Henderson, "A low dark count sin- gle photon avalanche diode structure compatible with standard nanometer scale CMOS technology," IEEE Photon. Technol. Lett., vol. 21, no. 14, pp. 120-1022, 2009.
  23. Y. Liu, U. Vollenbruch, Y. Chen, C. Wicpalek, L. Maurer, Z. Boos, and R. Weigel, "Multi-stage pulse shrinking time-to-digital converter for time interval measurements," in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2007, pp. 267-270.
  24. R. B. Staszewski, S. K. Vemulapalli, J. L. Wallberg, and P. T. Bal- sara, "1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 220-224, Mar. 2006.
  25. B. Markovic, S. Tisa, F. A. Villa, A. Tosi, and F. Zappa, "A high-linearity, 17 ps precision time-to-digital converter based on a single-stage delay Vernier loop fine interpolation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 557-569, Mar. 2013.
  26. J. P. Jansson, A. Mäntyniemi, and J. Kostamovaara, "A CMOS time-to- digital converter with better than 10 ps single-shot precision," IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1286-1296, Jun. 2006.
  27. A. Mantyniemi, T. Rahkonen, and J. Kostamovaara, "A CMOS time-to- digital converter (TDC) based on a cyclic time domain successive ap- proximation interpolation method," IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3067-3078, Nov. 2009.
  28. B. Markovic, D. Tamborini, F. Villa, S. Tisa, A. Tosi, and F. Zappa, "10 ps resolution, 160 ns full scale range and less than 1.5 differential non- linearity time-to-digital converter module for high performance timing measurements," Rev. Sci. Instrum., vol. 83, no. 7, p. 074703, 2012
  29. F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, "SPAD smart-pixel for time-of-flight and time-correlated single-photon counting measure- ments," IEEE Photon. J., vol. 4, no. 3, pp. 795-804, Jun. 2012.
  30. D. M. Santos, S. F. Dow, and M. E. Levi, "CMOS delay locked loop and sub-nanosecond time-to-digital converter chip," in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf., 1995, vol. 1, pp. 289-291.
  31. B. Nikolić, V. G. Oklobdžija, V. Stojanović, W. Jia, J. K.-S. Chiu, and M. M.-T. Leung, "Improved sense-amplifier-based flip-flop: Design and measurements," IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 876-884, Jun. 2000.
  32. D. Bronzi, S. Tisa, F. Villa, A. Tosi, and F. Zappa, "Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects," IEEE Pho- ton. Technol. Lett., vol. 25, no. 8, pp. 776-779, Apr. 2013.
  33. D. V. O'Connor and V. Phillips, Time-Correlated Single Photon Counting. London, U.K.: Academic, 1984.
  34. E. S. Nielsen, L. A. Canalis, and M. H. Tejera, "Hand gesture recognition for human-machine interaction," J. WSCG, vol. 12, no. 1-3, pp. 395-402, 2004.
  35. A. Kolb, E. Barth, R. Koch, and R. Larsen, "Time-of-flight sensors in computer graphics," in Proc. Eur. Assoc. Comput. Graph., 2009, pp. 119-134.
  36. Federica Villa received the B.Sc. degree in biomedical engineering and the M.Sc. and Ph.D. degrees in electronic engineering from the Politecnico di Milano, in 2008, 2010, and 2014, respectively. In 2010, she interned in the Biochemistry Department, University of California, Los Angeles. Her current research interests include designing CMOS SPAD imagers for 2-D imaging of fluorescence decays and 3-D ranging through on-chip direct time-of-flight method, by means of in-pixel time-to-digital converters.
  37. Rudi Lussana was born in Bergamo, Italy, in 1989. He received the bachelor's degree and the M.Sc. degree in electronic engineering from Politecnico di Milano, in 2011 and 2013, respectively. Since November 2013, he has been working toward the Ph.D. degree in electronic engineering at the Politecnico di Milano. His main research interests include the field of single-photon 3-D cameras, in particular on direct time of flight technique.