Prosthesis use in adult acquired major upper-limb amputees: patterns of wear, prosthetic skills and the actual use of prostheses in activities of daily life (original) (raw)

Determining skill level in myoelectric prosthesis use with multiple outcome measures

2012

To obtain more insight into how the skill level of an upper-limb myoelectric prosthesis user is composed, the current study aimed to (1) portray prosthetic handling at different levels of description, (2) relate results of the clinical level to kinematic measures, and (3) identify specific parameters in these measures that characterize the skill level of a prosthesis user. Six experienced transradial myoelectric prosthesis users performed a clinical test (Southampton Hand Assessment Procedure [SHAP]) and two grasping tasks. Kinematic measures were end point kinematics, joint angles, grasp force control, and gaze behavior. The results of the clinical and kinematic measures were in broad agreement with each other. Participants who scored higher on the SHAP showed overall better performance on the kinematic measures. They had smaller movement times, had better grip force control, and needed less visual attention on the hand. The results showed that time was a key parameter in prosthesis use and should be one of the main focus aspects of rehabilitation. The insights from this study are useful in rehabilitation practice because they allow therapists to specifically focus on certain parameters that may result in a higher level of skill for the prosthesis user.

Prosthesis use in persons with lower- and upper-limb amputation

The Journal of Rehabilitation Research and Development, 2008

This study identified clinical (e.g., etiology) and demographic factors related to prosthesis use in persons with upper-and lower-limb amputation (ULA and LLA, respectively) and the effect of phantom limb pain (PLP) and residual limb pain (RLP) on prosthesis use. A total of 752 respondents with LLA and 107 respondents with ULA completed surveys. Factors related to greater use (hours per day) for persons with LLA included younger age, full-or part-time employment, marriage, a distal amputation, an amputation of traumatic etiology, and an absence of PLP. Less use was associated with reports that prosthesis use worsened RLP, and greater prosthesis use was associated with reports that prosthesis use did not affect PLP. Having a proximal amputation and reporting lower average PLP were related to greater use in hours per day for persons with an ULA, while having a distal amputation and being married were associated with greater use in days per month. Finally, participants with LLA were significantly more likely to wear a prosthesis than those with ULA. These results underscore the importance of examining factors related to prosthesis use and the differential effect that these variables may have when the etiology and location of amputation are considered.

A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis

The Journal of Rehabilitation Research and Development, 2004

A correct prosthetic prescription can be derived from adapting the functional benefits of a prosthesis to the functional needs of the prosthetic user. For adequate matching, the functional abilities of the amputees are of value, as well as the technical and functional aspects of the various prosthetic components. No clear clinical consensus seems to be given on the precise prescription criteria. To obtain information about different prosthetic components and daily functioning of amputees with a prosthesis, we performed a systematic literature search. The quality of the studies was assessed with the use of predetermined methodological criteria. Out of 356 potentially relevant studies, 40 studies eventually qualified for final methodological analysis and review. Four satisfied all the criteria and were classified as A-level studies, 26 as B-level, and 10 studies as C-level studies. Despite a huge amount of literature, our formal clinical knowledge had considerable gaps concerning the effects of different prosthetic components and their mechanical characteristics on human functioning with a lowerlimb prosthesis. Therefore, with regard to prosthetic guideline development, we must still largely rely on clinical consensus among experts. The integration of knowledge from research with the expert opinion of clinical professionals and the opinions and wishes of consumers can form a solid base for a procedure on guideline development for prosthetic prescription.

Prosthesis donning and doffing questionnaire Development and validation

SAGE PUBLICATIONS LTD, 2017

Objectives: To develop a questionnaire that specifically evaluates the ability of trans-tibial amputees to don and doff a prosthesis and to investigate the psychometric properties of the newly developed questionnaire. Background: Prosthesis should be donned and doffed few times during the day and night; thus, it is important to measure ease of donning and doffing. Study design: A cross-sectional study. Methods: The questionnaire was designed and evaluated by a group of experts. The final questionnaire was administered to 50 individuals with trans-tibial amputation. A test-retest study was also conducted on 20 amputees to assess the repeatability of questionnaire items. Results: The prosthesis donning and doffing questionnaire was developed and tested through a pilot study. Based on Kappa index, the questionnaire items showed correlation coefficients greater than 0.7, which indicate good reliability and repeatability. The majority of the participants had good hand dexterity (80%) and could perform all types of grasps. The mean satisfaction scores with donning and doffing were 69.9 and 81.4, respectively. Most of the respondents needed to don and doff the prosthesis 3.44 times per day. Based on a 7-point score, the total scores ranged between 3 and 7. Conclusion: The prosthesis donning and doffing questionnaire items showed good psychometric properties. A scoring method was suggested based on the pilot sample, which requires further evaluation to be able to differentiate between more suspension types. A larger international multicenter evaluation is required in the future to measure the responsiveness of the scales. This questionnaire will be useful in the evaluation of the ability of amputees to don and doff a trans-tibial limb prosthesis. Clinical relevance Donning and doffing of prostheses are challenging tasks for many lower limb amputees. The prosthesis donning and doffing questionnaire, on its own or combined with other prosthetic evaluation questionnaires, has the potential to help manufacturers, clinicians, and researchers gain knowledge and improve the donning and doffing qualities of prostheses.

Literature Review on Needs of Upper Limb Prosthesis Users

Frontiers in Neuroscience, 2016

The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.

Platform for Adaptation of Myoelectric Prostheses in People with Upper Limb Amputation

Communications in Computer and Information Science, 2020

This paper describes a platform for adaptation of myoelectric prostheses in people with upper limb amputation. The design of the platform is based on the anthropometry and biomechanics of human upper limb, servomotors are used to drive each degree of freedom, except in the articulation of the elbow, in which a gear motor is used. The myoelectric signal acquisition system includes Myoware myoelectric signal sensors from the company Advancer Technologies, an embedded system based on Arduino and a graphic interface to visualize myoelectric signals in real time. The implementation platform allows to replicate flexion/extension movements for the elbow, wrist, and each finger of the hand, pronation/supination of the wrist, and adduction/abduction of the thumb. The data acquisition system allows to visualize in real time, muscular activity concerning for 4 muscles, and was tested in people with upper limb amputation registering significant values for different movement intentions. The platform presented provides a feedback that could improve the adaptation of a superior limb amputee to a myoelectric prosthesis. The characterization of myoelectric signals generated by the residual limb of a person with upper limb amputation, allows to generate control signals according to a movement intention that would be replicated in the platform.