Sensitivity of the nested-polymerase chain reaction (PCR) assay for Brugia malayi and significance of ‘free’ DNA in PCR-based assays (original) (raw)

Comparison of conventional versus real-time PCR detection of Brugia malayi DNA from dried blood spots from school children in a low endemic area

Tropical biomedicine

Microscopic detection of active phase of lymphatic filariasis is indicated by the presence of microfilaria in whole blood. This method is not sensitive and requires relatively large amount of blood sample. PCR allows very sensitive detection of the parasite DNA using a smaller amount of blood; and the use of dried blood spots facilitates sample transportation. Nevertheless, limited studies have been reported on PCR using dried blood spot for detection of Brugia malayi. In this study, we investigated the effects of concentrating whole blood genomic DNA sample and the amplification methods [conventional PCR (C-PCR) and real-time PCR] on the detection of B. malayi DNA from dried blood spots from a very low endemic area in Malaysia. Both C-PCR and real-time PCR detected 2 out of 18 (11%) samples as positive from non-concentrated genomic DNA preparations. After the DNA samples were pooled and concentrated, both C-PCR and realtime PCR detected B. malayi DNA amplifications in 7 out of 18 (39%) samples. However one sample which showed faint band in C-PCR was detected as highly positive in real-time PCR. In conclusion, both C-PCR and real-time PCR using dried blood spots from a low endemic area demonstrated equal sensitivity for detection of B. malayi DNA.

A Field Study Using the Polymerase Chain Reaction ( P C R ) T O Screen for Brugia Microfilariae in Human a N D Animal B L O O D

2012

Blood samples from 43 humans and 14 cats positive with Bmgia microfilariae were analyzed in a field study in Tanjung Pinang, Indonesia. The study used the polymerase chain reaction (PCR) to compare the sensitivity of radioactive and biotinylated species-specific oligonuleotide probes. The cloning characterization of the Hha I repeat DNA family found in filarial parasites of the genus Brugia, and the development of species-specific probes for B.malayi and B.pahangi based on these repeats has been described elsewhere (PNAS USA 83: 797-801); Mol.Biochem. Parasitol. 28: 163-170). The use of radioisotopes for labelling DNA probes is both expensive and inconvenient. To replace these probes, biotinylated DNA probes have been designed for nonradioactive detection of B.malayi and B.palrangi. These oligonucleotide probes have long tails of biotinylated uridine residues added to their 5' end. As little as 100 pg of Brugia DNA can be detected on dot blot with these probes. Detection of the ...

Detection of Brugia Parasite DNA in Human Blood by Real-Time PCR

Journal of Clinical Microbiology, 2006

Brugian filariasis (caused by the nematodes Brugia malayi and B. timori ) is an important cause of disability in Southeast Asia. Improved diagnostic tests are needed for filariasis elimination programs (to identify areas of endemicity and to monitor progress) and for diagnosis of the disease in infected individuals. We have developed and evaluated two real-time PCR assays for detecting Brugia DNA in human blood and compared the results of these assays to those of “gold standard” assays. One assay uses a TaqMan probe (TaqM) to amplifiy a 320-bp “HhaI repeat” DNA sequence. The other assay uses a minor groove binding probe (MGB) and modified nucleotides in primers (Eclipse MGB) to amplify a 120-bp fragment of the HhaI repeat. This assay detects 22 copies of the target sequence, and it is more sensitive than the TaqM assay. Both assays were evaluated with human blood samples from two different areas of endemicity. The MGB assay was as sensitive as membrane filtration and microscopy for ...

PCR elisa for the detection of Brugia malayi infection using finger-prick blood

Transactions of The Royal Society of Tropical Medicine and Hygiene, 1998

A polymerase chain reaction assay based on the enzyme-linked immunosorbent assay (PCR-ELISA) has been developed to detect Brugia malayi infection in an area of low endemicity in Malaysia. Blood samples from 239 subjects were tested: 192 amicrofilaraemic individuals, 14 microfilaraemic persons and 3 chronic elephantiasis cases from endemic areas and 30 city-dwellers (non-endemic controls). PCR products were examined by ELISA and Southern hybridization.

Field validation of sensitivity and specificity of rapid test for detection of Brugia malayi infection

Tropical Medicine & International Health, 2005

We conducted a field study of a rapid test (Brugia Rapid) for detection of Brugia malayi infection to validate its sensitivity and specificity under operational conditions. Seven districts in the state of Sarawak, Malaysia, which are endemic for brugian filariasis, were used to determine the test sensitivity. Determination of specificity was performed in another state in Malaysia (Bachok, Kelantan) which is non-endemic for filariasis but endemic for soil-transmitted helminths. In Sarawak both the rapid test and thick blood smear preparation were performed in the field. The rapid test was interpreted on site, whereas blood smears were taken to the district health centres for staining and microscopic examination. Sensitivity of Brugia Rapid dipstick as compared with microscopy of thick blood smears was 87% (20/23; 95% CI: 66.4-97.2) whereas the specificity was 100% (512/512). The lower sensitivity of the test in the field than in laboratory evaluations ( ‡95%), was probably due to the small number of microfilaraemic individuals, in addition to difficulties in performing the test in remote villages by field personnel. The overall prevalence of brugian filariasis as determined by the dipstick is 9.4% (95% CI: 8.2-0.5) while that determined by microscopy is 0.90% (95% CI: 0.5-1.3) thus the dipstick detected about 10 times more cases than microscopy. Equal percentages of adults and children were found to be positive by the dipstick whereas microscopy showed that the number of infected children was seven times less than infected adults. The rapid dipstick test was useful as a diagnostic tool for mapping and certification phases of the lymphatic filariasis elimination programme in B. malayi-endemic areas. keywords Brugia malayi, rapid test, field validation M. Jamail et al. Detection of Brugia malayi infection ª 2005 Blackwell Publishing Ltd

The development and evaluation of a single step multiplex PCR method for simultaneous detection of Brugia malayi and Wuchereria bancrofti

Molecular and Cellular Probes, 2007

A single step novel multiplex polymerase chain reaction (PCR) has been developed for simultaneous detection of human filarial parasites, Brugia malayi and Wuchereria bancrofti, from blood samples and mosquitoes. The primers used were novel and have been tested with the parasite DNA amplifying 188 bp (BM) and 129 bp (WB) DNA fragments, specific to B. malayi and W. bancrofti, respectively, in a single reaction. The specificity of the PCR product was confirmed by DNA sequencing and slot blot hybridization assay. The test was found highly sensitive for both B. malayi and W. bancrofti by detecting the parasitaemia up to the level of one microfilaria per reaction. The assay was further evaluated on 98 blood samples and 144 mosquito samples collected from filarial endemic areas. The PCR was found to be more efficient in comparison to microscopy by detecting 8% and 5% more filarial parasites in fieldcollected blood and mosquito samples, respectively. This novel PCR that offers scope for simultaneous detection of both the parasites may be used as a diagnostic tool for the detection of filariasis in population and can be adopted for rapid surveillance and monitoring of mosquitoes for use in the effective control of filariasis.

A Brugia malayiAntigen Specifically Recognized by Infected Individuals

Biochemical and Biophysical Research Communications, 1998

Western blot analyses were performed on 444 serum specimens: 40 sera from microfilaraemic individuals, 10 sera from elephantiasis patients, 24 treated individuals, 50 sera from residents of endemic areas without anti-filarial IgG4 antibodies (endemic normals), 20 sera from amicrofilaraemic individuals with high antifilarial IgG4 antibodies, 200 sera from healthy citydwellers (non-endemic samples), and 100 sera from soil-transmitted helminth-infected individuals. Phast electrophoresis system was used to electrophorese Brugia malayi soluble adult worm antigen on 10 -15% SDS-PAGE gradient gels followed by electrophoretic transfer onto PVDF membranes. Membrane strips were then successively incubated with blocking solution, human sera, and monoclonal anti-human IgG4 antibody-HRP, with adequate washings done in between each incubation step. Luminol chemiluminescence detection was then used to develop the blots. An antigenic band with the MW of ϳ37 kDa was found to be consistently present in the Western blots of all microfilaraemic sera, all amicrofilaraemic sera with high titres of anti-filarial IgG4 antibodies, some treated patients, and some elephantiasis patients. The antigen did not occur in immunoblots of individuals with other helminthic infections, normal endemic individuals, and city dwellers. Therefore the B. malayi antigen of with the MW of ϳ37 kDa demonstrated specific reactions with sera of B. malayi-infected individuals and thus may be useful for diagnostic application.

Amplification of Brugia malayi DNA using Hha1 Primer as a Tool

The Open Conference Proceedings Journal, 2015

Lymphatic filariasis, a neglected parasitic disease caused by tissue dwelling human filarial nematodes such as Wuchereria bancrofti, Brugia malayi and B. timori is considered to be a major complication for the socio-economic development in developing countries. A number of inflammatory responses are associated with the diseases such as adeno-lymphangitis, lymphoedema, hydrocele and elephantiasis. The present study is directed towards the identification and amplification of Hha 1 gene for diagnosis of B. malayi. The specific primer Hha1 specific to Brugia malayi was used for detecting the parasites and was found to give optimum yield in the positive control samples. The results were confirmed from the amplified fragment having size of 322 bp of B. malayi. Using this primer as a diagnostic tool for the detection of filariasis might be the most promising aspect of the study and offers scope for detection of both the parasites even at low levels of infection.

Real-time PCR detection of the HhaI tandem DNA repeat in pre- and post-patent Brugia malayi Infections: a study in indonesian transmigrants

Parasites & Vectors, 2014

Background: Lymphatic filariasis caused by Wuchereria bancrofti or Brugia spp. is a public health problem in developing countries. To monitor bancroftian filariasis infections, Circulating Filarial Antigen (CFA) test is commonly used, but for brugian infections only microfilariae (Mf) microscopy and indirect IgG4 antibody analyses are available. Improved diagnostics for detecting latent infections are required. Methods: An optimized real-time PCR targeting the brugian HhaI repeat was validated with plasma from microfilariae negative Mongolian gerbils (jirds) infected with B. malayi. Plasma samples from microfilaremic patients infected with B. malayi or W. bancrofti were used as positive and negative controls, respectively. PCR results of plasma samples from a transmigrant population in a B. malayi endemic area were compared to those of lifelong residents in the same endemic area; and to IgG4 serology results from the same population. To discriminate between active infections and larval exposure a threshold was determined by correlation and Receiver-Operating Characteristics (ROC) curve analyses. Results: The PCR detected HhaI in pre-patent (56 dpi) B. malayi infected jirds and B. malayi Mf-positive patients from Central Sulawesi, Indonesia. HhaI was also detected in 9/9 elephantiasis patients. In South Sulawesi 87.4% of the transmigrants and lifelong residents (94% Mf-negative) were HhaI PCR positive. Based on ROC-curve analysis a threshold for active infections was set to >53 HhaI copies/μl (AUC: 0.854). Conclusions: The results demonstrate that the HhaI PCR detects brugian infections with greater sensitivity than the IgG4 test, most notably in Mf-negative patients (i.e. pre-patent or latent infections).