Aging increases flexibility of postural reactive responses based on constraints imposed by a manual task (original) (raw)
Related papers
Age-induced modifications of static postural control in humans
Neuroscience Letters, 2003
We examined how young and older adults adapt their posture to static balance tasks of increasing difficulty. Participants stood barefoot on a force platform in normal quiet, Romberg-sharpened and one-legged stance. Center of pressure (CoP) variations, electromyographic (EMG) activity of ankle and hip muscles and kinematic data were recorded. Both groups increased postural sway as a result of narrowing the base of support. Greater CoP excursions, EMG activity and joint displacements were noted in old compared to younger adults. Older adults displayed increased hip movement accompanied by higher hip EMG activity, whereas no similar increase was noted in the younger group. It is concluded that older adults rely more on their hip muscles when responding to self induced perturbations introduced by increased task constraints during quiet standing. q
Motriz: Revista de Educação Física
To investigate postural control between active (AOA) and inactive (IOA) older adults and active young adults (YA) due to the difficulty level of the postural task. Methods: 25 active YA, 31 AOA, and 30 IOA were invited to perform postural tasks with eyes open and closed: bipedal stance on a rigid surface, bipedal stance on an unstable surface, semi-tandem stance on a rigid surface, and semi-tandem stance on an unstable surface. Results: IOA (0.74 cm) presented higher COP displacement amplitude in the mediolateral direction than AOA (0.64 cm) only in bipedal stance on an unstable surface with eyes closed condition (p ≤ 0.0001). In relation to frequency variables, IOA (0.37 Hz) presented a greater frequency band with 50% of the spectral power in the mediolateral direction than AOA (0.28 Hz) in all experimental conditions, except for semi-tandem stance on a rigid surface (p ≤ .0001). AOA (0.62 cm | 0.28 Hz) and IOA (0.67 cm | 0.37 Hz) presented an increase in time/frequency variables in both directions (anteriorposterior and mediolateral) than YA (0.52 cm | 0.17 Hz) (p ≤ 0.0001) that indicates a worse performance of postural control as the level of task difficulty increased, such as unstable base with eyes open and closed. Conclusion: Older adults tend to present greater COP sway and velocity when subjected to complex tasks compared with younger, which is more evident in older adults physically inactive. This could be considered an adaptive strategy by older adults to minimize the risk of losing balance and, consequently, falling.
Effects of age and task difficulty on postural sway, variability and complexity
Adaptive Behavior, 2020
This study aimed to examine the effects of age and the task difficulty on postural sway, variability and complexity. The participants were 90 able-bodied individuals including children ( n = 39; age: 5.89 ± 0.94 years), young adults ( n = 30; age: 23.23 ± 1.61 years) and older adults ( n = 21; age: 64.59 ± 5.24 years) who took part in different balance tasks that had different levels of cognitive and physical challenges. The main dependent variables were postural sway area, postural variability and postural complexity. The participants stood on a standard force plate for 10 s in each task condition, and the centre of pressure displacement was collected at 100-Hz sampling frequency. The results of this study showed that children and older adults, in the more difficult tasks, had greater sway area and complexity and less postural variability. In addition, there was a linear trend in the stability measures as the difficulty of the task was increased. In conclusion, special populations,...
Older adults utilize less efficient postural control when performing pushing task
Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology, 2015
The ability to maintain balance deteriorates with increasing age. The aim was to investigate the role of age in generation of anticipatory (APA) and compensatory (CPA) postural adjustments during pushing an object. Older (68.8±1.0years) and young adults (30.1±1.4years) participated in the experiment involving pushing an object (a pendulum attached to the ceiling) using both hands. Electrical activity of six leg and trunk muscles and displacements of the center of pressure (COP) were recorded and analyzed during the APA and CPA phases. The onset time, integrals of muscle activity, and COP displacements were determined. In addition, the indexes of co-activation and reciprocal activation of muscles for the shank, thigh, and trunk segments were calculated. Older adults, compared to young adults, showed less efficient postural control seen as delayed anticipatory muscle onset times and delayed COP displacements. Moreover, older adults used co-activation of muscles during the CPA phase wh...
European Journal of Applied Physiology, 2001
Age-related dierences in postural control in response to a relatively large deceleration resulting from postural disturbance were investigated in eight normal elderly men (age range 67±72 years) and eight young men as controls (age range 19±22 years) using a moving platform. Data were obtained for the hip, knee and ankle angles, position of the centre of foot pressure (CFP), head acceleration, and muscle activity of the leg muscles. The elderly subjects had slower and larger ankle and hip joint movements, and CFP displacement in response to the disturbance compared to the young controls. The elderly subjects also had a delayed occurrence, and greater magnitude of peak acceleration of head rotation than did the young subjects. For the elderly subjects, the CFP was closely related to angular changes in the hip joint movement, but not to those of the ankle and knee joint movements. For the young subjects, on the other hand, the CFP was signi®cantly correlated with angular change in the ankle joint. Cocontraction of the tibialis anterior and gastrocnemius muscles was observed in the elderly subjects. The results indicated that a movement pattern for postural correction in the elderly adults was dierent from that of the young adults. The elderly relied more on hip movements while the young controls relied on ankle movements to control postural stability.
Task demand effects on postural control in older adults
Human Movement Science, 2006
The literature shows conflicting results regarding older adults' (OA) postural control performance. Differing task demands amongst scientific studies may contribute to such ambiguous results. Therefore, the purpose of this study was to examine the performance of postural control in older adults and the relationship between visual information and body sway as a function of task demands. Old and young adults (YA) maintained an upright stance on different bases of support (normal, tandem and reduced), both with and without vision, and both with and without room movement. In the more demanding tasks, the older adults displayed greater body sway than the younger adults and older adults were more influenced by the manipulation of the visual information due to the room movement. However, in the normal support condition, the influence of the moving room was similar for the two groups. These results suggest that task demand is an important aspect to consider when examining postural control in older adults.
Age-Related Changes in Postural Control in Physically Inactive Older Women
Journal of geriatric physical therapy (2001), 2017
The maintenance of postural control is influenced by the complexity of a given task. Tasks that require greater attention and cognitive involvement increase the risk of falls among older adults. The aim of the present study was to evaluate the adaptation of the postural control system to different levels of task complexity in physically inactive young and older women. A cross-sectional study was conducted with adult women classified as physically inactive based on the results of the International Physical Activity Questionnaire. The participants were 27 young (20-30 years of age) and 27 older (60-80 years of age) women. Sway velocity of the center of pressure in the anterior-posterior and medial-lateral directions was calculated using a force plate under 6 conditions: standing directly on the force plate or on a foam placed over the force plate, eyes open or closed, and task complexity with and without the foam. A 2-way analysis of variance revealed that sway velocity increased in b...
Effects of aging in postural strategies during a seated auto-stabilization task
Journal of Electromyography and Kinesiology, 2013
Impaired sensory, motor and central processing systems combining with biomechanical changes are risk of fall factors in the elderly population. The aim of this study was to assess the auto-adaptation and the regulation of the dynamic control of equilibrium in age-related adaptive strategies, by using a seated position on a seesaw. 15 young adults and 12 healthy middle-aged adults were asked to actively maintain a sitting posture as stable as possible during 12.8 s, on a 1-degree of freedom seesaw (auto-stabilization paradigm), with and without vision. The seesaw was placed in order to allow roll or pitch oscillations. We determine length and surfaces CoP shifts, mean positions and variability, a Postural Performance Index (PI) and a Strategy Organization Ratio (SOR). Our results shows that adopted strategies are plane-dependant during auto-stabilization (parallel and perpendicular axes control is impacted) and age-dependant. PI x during roll seated auto-stabilization tasks appears as the most relevant parameter of aged-related instability. The visual effect, during pitch auto-stabilization, characterizes the postural sensory-motor human behavior. The quantitative and qualitative postural assessment, thanks to seated auto-stabilization task, need to be promoted for long-term health care and probably for the rehabilitation of various disorders.
Age-related changes in human postural control of prolonged standing
Gait & Posture, 2005
The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults. It is unknown how elderly individuals behave during prolonged standing and how demanding such a task is for them. We recorded the center of pressure (COP) position of 14 elderly subjects and 14 adults while they performed prolonged standing (30 min) and quiet stance tasks (60 s) on a force plate. The number and amplitude of the COP patterns, the root mean square (RMS), speed, and frequency of the COP sway were analyzed. The elderly subjects were able to stand for prolonged periods but they produced postural changes of lesser amplitude and a decreased sway during the prolonged standing task. Both the adults and the elderly subjects were influenced by the prolonged standing task, as demonstrated by their increased COP RMS and COP speed in the quiet standing trial after the prolonged standing task, in comparison to the trial before. We suggest that the lack of mobility in elderly subjects may be responsible for the observed sub-optimal postural changes in this group. The inability of elderly individuals to generate similar responses to adults during prolonged standing may contribute to the increased risk of falls in the older population. #
Influence of age on postural sway during different dual-task conditions
Frontiers in aging neuroscience, 2014
Dual-task performance assessments of competing parallel tasks and postural outcomes are growing in importance for geriatricians, as it is associated with predicting fall risk in older adults. This study aims to evaluate the postural stability during different dual-task conditions including visual (SMBT), verbal (CBAT) and cognitive (MAT) tasks in comparison with the standard Romberg's open eyes position (OE). Furthermore, these conditions were investigated in a sample of young adults and a group of older healthy subjects to examine a potential interaction between type of secondary task and age status. To compare these groups across the four conditions, a within-between mixed model ANOVA was applied. Thus, a stabilometric platform has been used to measure center of pressure velocity (CoPV), sway area (SA), antero-posterior (AP) and medio-lateral (ML) oscillations as extents of postural sway. Tests of within-subjects effects indicated that different four conditions influenced the ...