An Improved Approach to Maximize the Performance of Disk Scheduling Algorithm by Minimizing the Head Movement and Seek Time Using Sort Mid Current Comparison (SMCC) Algorithm (original) (raw)

Comparative Study of Disk Scheduling Algorithms and Proposal of a New Algorithm for Better Efficiency

SSRN Electronic Journal, 2019

The objective of this paper is to identify the benefits and drawbacks of the disk scheduling algorithms and proposing an improved algorithm. The performance of a disk drive depends on various factors like seek time, latency time, access time and structure of the disk. This paper covers the comparative analysis of famous disk scheduling algorithms and proposal of a new algorithm with better performance. [1]Since the performance is based on seek time and access time which are dependent on head movement of the disk arm. Therefore, this paper focuses on comparing the head movement of the various algorithms with the new algorithm and concludes on the performance of the algorithms.

A Comparative Analysis of Disk Scheduling Algorithms

International Journal for Research in Applied Sciences and Biotechnology, 2021

In an operating system, disk scheduling is the process of managing the I/O request to the secondary storage devices such as hard disk. The speed of the processor and primary memory has increased in a rapid way than the secondary storage. Seek time is the important factor in an operating system to get the best access time. For the better performance, speedy servicing of I/O request for secondary memory is very important. The goal of the disk-scheduling algorithm is to minimize the response time and maximize throughput of the system. This work analyzed and compared various basic disk scheduling techniques like First Come First Serve (FCFS), Shortest Seek Time First (SSTF), SCAN, LOOK, Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK) along with the corresponding seek time. From the comparative analysis, the result show that C-LOOK algorithm give the least head movement and seek time in different cases as compared to other algorithm. Therefore, it maximizes the throughput for the storage devices.

A New Heuristic Disk Scheduling Algorithm

International Journal of Scientific & Technology Research, 2013

Since the invention of the movable head disk, people have improved I/O performance by intelligent scheduling of disk accesses. Processor speed and memory capacity are increasing several times faster than disk speed. This disparity suggests that disk I/O performance w ill become an important bottleneck .Methods are needed for using disks more efficiently. Past analysis of disk scheduling algorithms has largely been experimental and little attempt has been made to develop algorithms w ith provable performance guarantees. Disk performance management is an increasingly important aspect of operating system research and development. In this paper a new disk scheduling algorithm has been proposed to reduce the number of movement of head. It is observed that in existing scheduling algorithms the number of head movement is high. But we proposed a new real- time disk scheduling algorithm that reduces the head movement therefore it maximizes throughput for modern storage devices.

STUDY OF DIFFERENT ALGORITHMS USE FOR DISK SCHEDULING PROCESS

This paper aims to discuss the functioning of a disk and the comparative procedure involved in the retrieval of data on a direct access storage device by different algorithms. Efficiency of the different Disk Scheduling algorithms such as First Come First Serve (FCFS), Shortest Seek Time First (SSTF), Scan, Circular Scan (C-Scan) Scheduling algorithm. Disk requests execution and their pros and cons are also provided in this paper in order to make contrasts and comparisons of performance of the said algorithms. This paper also shows the differentiating abilities of the different scheduling algorithms and its effect to storage management, a better analysis of what disk scheduling algorithms do and how these amend the performance of servicing disk requests.

Design and Performance Evaluation of an Optimized Disk Scheduling Algorithm (ODSA)

International Journal of …, 2012

Management of disk scheduling is a very important aspect of operating system. Performance of the disk scheduling completely depends on how efficient is the scheduling algorithm to allocate services to the request in a better manner. Many algorithms (FIFO, SSTF, SCAN, C-SCAN, LOOK, etc.) are developed in the recent years in order to optimize the system disk I/O performance. By reducing the average seek time and transfer time, we can improve the performance of disk I/O operation. In our proposed algorithm, Optimize Disk Scheduling Algorithm (ODSA) is taking less average seek time and transfer time as compare to other disk scheduling algorithms (FIFO, SSTF, SCAN, C-SCAN, LOOK, etc.), which enhances the efficiency of the disk performance in a better manner.

Major Half Served First (MHSF) Disk Scheduling Algorithm

I/O performance has been improved by proper scheduling of disk accesses since the time movable head disk came into existence. Disk scheduling is the process of carefully examining the pending requests to determine the most efficient way to service the pending requests. Scheduling algorithms generally concentrate on reducing seek times for a set of requests, because seek times tend to be an order of magnitude greater than latency times. Some important scheduling algorithms are First-Come-First-Served (FCFS), Shortest Seek Time First (SSTF), SCAN, Circular Scan (C-SCAN) and LOOK. This paper proposes a new disk scheduling algorithm called Major Half Served First (MHSF). Simulation results show that using MHSF the service is fast and seek time has been reduced drastically.

Simple Sequence Oriented Disk (SSOD) Scheduling Algorithm

International Journal of Computer Applications, 2014

As the hard-disk technology has been improved considerably. A significant amount of work also has been done to reduce the seek time of the disk. With the increased speed of processor, faster RAM compatible disk scheduling algorithms had been proposed and some of them are really implemented. The main focus of most of the proposed algorithms is to reduce head movement. In this paper a new disk scheduling algorithm has been proposed ie. Simple Sequence Oriented Disk Scheduling Algorithm (SSOD) which significantly reduces the head movement when compared to some famous already existing disk scheduling algorithms.

Simulation and Performance Comparison of Four Disk Schedulingalgorithms

TENCON 2000. Proceedings, 2000

Hard disks are being used to store huge informatioddata in all modem computers. Disk drives must provide faster access time in order to optimize speed of I/O operations. In multitasking system with many processes, disk performance can be improved by incorporating a scheduling algorithm for maintaining several pending requests in the disk queue. This paper describes development of a simulator which uses four disk scheduling algorithms (FCFS, SSTF, LOOK for both upward and downward direction, and C-LOOK) to measure their performance in terms of total head movement. Five different types of test samples, containing request tracks from 8 to 50, have been used to obtain simulation results. Developed simulator runs successfully

An Improved FCFS (IFCFS) Disk Scheduling Algorithm

Since the time movable head disk came into existence, the I/O performance has been improved by proper scheduling of disk accesses. Disk scheduling involves a careful examination of pending requests to determine the most efficient way to service the requests. The two most common types of scheduling are seek optimization and rotational (or latency) optimization. Most of the scheduling algorithms concentrate on reducing seek times for a set of requests, because seek times tend to be an order of magnitude greater than latency times. Some of the most important scheduling algorithms are First-Come-First-Served (FCFS), Shortest Seek Time First (SSTF), SCAN, Circular Scan (C-SCAN) and LOOK. FCFS is the simplest form of disk scheduling algorithm. This algorithm is simple to implement, but it generally does not provide the fastest service. This paper describes an improvement in FCFS. A simulator program has been designed and tested the improved FCFS. After improvement in FCFS it has been found that the service is fast and seek time has been reduced drastically.

Disk scheduling with shortest cumulative access time first algorithms

Turkish J. Electr. Eng. Comput. Sci., 2017

A new class of scheduling algorithms is proposed for disk drive scheduling. As opposed to choosing the request with the shortest access time in conventional shortest access time first (SATF) algorithms, we choose an ordered sequence of pending I/O requests at the scheduling instant with the shortest cumulative access time. Additionally, we introduce flexibility for forthcoming requests to alter the chosen sequence. Simulation results are provided to validate the effectiveness of the proposed disk scheduler. Throughput gains of 3% and above are shown to be attainable, although this occurs at the expense of increased computational complexity.