The Efflux Inhibitor Phenylalanine-Arginine Beta-Naphthylamide (PAβN) Permeabilizes the Outer Membrane of Gram-Negative Bacteria (original) (raw)

The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane

European journal of medicinal chemistry, 2022

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

β-Lactamase Inhibitors Are Substrates for the Multidrug Efflux Pumps of Pseudomonas aeruginosa

Antimicrobial Agents and Chemotherapy

The MexAB-OprM multidrug efflux system exports a number of antimicrobial compounds, including β-lactams. In an attempt to define more fully the range of antimicrobial compounds exported by this system, and, in particular, to determine whether β-lactamase inhibitors were also accommodated by the MexAB-OprM pump, the influence of pump status (its presence or absence) on the intrinsic antibacterial activities of these compounds and on their abilities to enhance β-lactam susceptibility in intact cells was assessed. MIC determinations clearly demonstrated that all three compounds tested, clavulanate, cloxacillin, and BRL42715, were accommodated by the pump. Moreover, by using β-lactams which were readily hydrolyzed by thePseudomonas aeruginosa class C chromosomal β-lactamase, it was demonstrated that elimination of themexAB-oprM-encoded efflux system greatly enhanced the abilities of cloxacillin and BRL42715 (but not clavulanate) to increase β-lactam susceptibility. With β-lactams which ...

Multidrug Efflux in Pseudomonas aeruginosa Components, Mechanisms and Clinical Significance

Current Topics in Medicinal Chemistry, 2001

Pseudomonas aeruginosa is an opportunistic human pathogen characterized by an intrinsic resistance to multiple antimicrobial agents and the ability to develop high-level (acquired) multidrug resistance during antibiotic therapy. Much of this resistance is promoted by highly homologous three-component efflux systems of broad substrate specificity, of which four have been identified to date. These include MexA-MexB-OprM and MexX-MexY-OprM, which are expressed constitutively in wild type cells and, thus, provide for intrinsic multidrug resistance, and MexC-MexD-OprJ and MexE-MexF-OprN, whose expression so far has only been seen in acquired multidrug resistant mutant strains. Additional homologues of these efflux systems are identifiable in the recently released genome sequence, though their roles, if any, in antimicrobial efflux are unknown. These tripartite pumps are composed of an integral cytoplasmic membrane drug-proton antiporter of the resistance-nodulation-cell division (RND) family of exporters, a channel-forming outer membrane efflux protein (or outer membrane factor [OMF]) and a periplasmic membrane fusion protein (MFP) that links the other two. In addition to a number of antimicrobials of clinical significance, these pumps also export dyes, detergents, disinfectants, organic solvents and acylated homoserine lactones involved in quorum-sensing. While the natural functional of these pumps remains undefined, the fact that they contribute to antimicrobial resistance in P. aeruginosa makes them reasonable targets for therapeutic intervention. Fig. (1). Schematic demonstrating the organization and operation of bacterial multidrug efflux pumps. OM, outer membrane, PP, periplasmic space, CM, cytoplasmic membrane.

Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa

Journal of bacteriology, 1997

A major feature of the MexAB-OprM multidrug efflux pump which distinguishes it from the MexCD-OprJ and MexEF-OprN multidrug efflux systems in Pseudomonas aeruginosa is its ability to export a wide variety of beta-lactam antibiotics. Given the periplasmic location of their targets it is feasible that beta-lactams exit the cell via the outer membrane OprM without interaction with MexA and MexB, though the latter appear to be necessary for OprM function. To test this, chimeric MexAB-OprJ and MexCD-OprM efflux pumps were reconstituted in delta mexCD delta oprM and delta mexAB delta oprJ strains, respectively, and the influence of the exchange of outer membrane components on substrate (i.e., beta-lactam) specificity was assessed. Both chimeric pumps were active in antibiotic efflux, as evidenced by their contributions to resistance to a variety of antimicrobial agents, although there was no change in resistance profiles relative to the native pumps, indicating that OprM is not the determ...

Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria

mBio

Gram-negative bacteria are notoriously resistant to antibiotics, but the extent of the resistance varies broadly between species. We report that in significant human pathogens Acinetobacter baumannii , Pseudomonas aeruginosa , and Burkholderia spp., the differences in antibiotic resistance are largely defined by their penetration into the cell. For all tested antibiotics, the intracellular penetration was determined by a synergistic relationship between active efflux and the permeability barrier. We found that the outer membrane (OM) and efflux pumps select compounds on the basis of distinct properties and together universally protect bacteria from structurally diverse antibiotics. On the basis of their interactions with the permeability barriers, antibiotics can be divided into four clusters that occupy defined physicochemical spaces. Our results suggest that rules of intracellular penetration are intrinsic to these clusters. The identified specificities in the permeability barrier...

Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa

Libyan Journal of Medicine, 2011

Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR) and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND) plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl b-naphthylamide (PAbN) have been introduced as efflux pump inhibitors (EPIs); their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAbN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings.

bLactamase Inhibitors Are Substrates for the Multidrug Efflux Pumps of Pseudomonas aeruginosa

2000

The MexAB-OprM multidrug efflux system exports a number of antimicrobial compounds, including b-lac- tams. In an attempt to define more fully the range of antimicrobial compounds exported by this system, and, in particular, to determine whether b-lactamase inhibitors were also accommodated by the MexAB-OprM pump, the influence of pump status (its presence or absence) on the intrinsic antibacterial activities of

The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence

Communications Biology

Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promisin...