Large-scale identification of leaf senescence-associated genes (original) (raw)
Related papers
Transcription factors regulating leaf senescence in Arabidopsis thaliana
Plant Biology, 2008
Senescence is a highly regulated process, eventually leading to cell and tissue disintegration: a physiological process associated with nutrient (e.g. nitrogen) redistribution from leaves to reproductive organs. Senescence is not observed in young leaves, indicating that repressors efficiently act to suppress cell degradation during early leaf development and ⁄ or that senescence activators are switched on when a leaf ages. Thus, massive regulatory network rewiring likely constitutes an important component of the pre-senescence process. Transcription factors (TFs) have been shown to be central elements of such regulatory networks. Here, we used quantitative real-time polymerase chain reaction (qRT-PCR) analysis to study the expression of 1880 TF genes during pre-senescence and early-senescence stages of leaf development, using Arabidopsis thaliana as a model. We show that the expression of 185 TF genes changes when leaves develop from half to fully expanded leaves and finally enter partial senescence. Our analysis identified 41 TF genes that were gradually up-regulated as leaves progressed through these developmental stages. We also identified 144 TF genes that were down-regulated during senescence. A considerable number of the senescence-regulated TF genes were found to respond to abiotic stress, and salt stress appeared to be the major factor controlling their expression. Our data indicate a peculiar fine-tuning of developmental shifts during late-leaf development that is controlled by TFs.
LSD 3.0: a comprehensive resource for the leaf senescence research community
Nucleic Acids Research, 2019
The leaf senescence database (LSD) is a comprehensive resource of senescence-associated genes (SAGs) and their corresponding mutants. Through manual curation and extensive annotation, we updated the LSD to a new version LSD 3.0, which contains 5853 genes and 617 mutants from 68 species. To provide sustainable and reliable services for the plant research community, LSD 3.0 (https://bigd.big.ac.cn/lsd/) has been moved to and maintained by the National Genomics Data Center at Beijing Institute of Genomics, Chinese Academy of Sciences. In the current release, we added some new features: (i) Transcriptome data of leaf senescence in poplar were integrated; (ii) Leaf senescence-associated transcriptome data information in Arabidopsis, rice and soybean were included; (iii) Senescence-differentially expressed small RNAs (Sen-smRNA) in Arabidopsis were identified; (iv) Interaction pairs between Sen-smRNAs and senescence-associated transcription factors (Sen-TF) were established; (v) Senescenc...
The Plant Cell …, 2011
Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.
New insights into the regulation of leaf senescence in Arabidopsis
Journal of Experimental Botany
Plants undergo developmental changes throughout their life history. Senescence, the final stage in the life history of a leaf, is an important and unique developmental process whereby plants relocate nutrients from leaves to other developing organs, such as seeds, stems, or roots. Recent attempts to answer fundamental questions about leaf senescence have employed a combination of new ideas and advanced technologies. As senescence is an integral part of a plant's life history that is linked to earlier developmental stages, age-associated leaf senescence may be analysed from a life history perspective. The successful utilization of multi-omics approaches has resolved the complicated process of leaf senescence, replacing a component-based view with a network-based molecular mechanism that acts in a spatial-temporal manner. Senescence and death are critical for fitness and are thus evolved characters. Recent efforts have begun to focus on understanding the evolutionary basis of the developmental process that incorporates age information and environmental signals into a plant's survival strategy. This review describes recent insights into the regulatory mechanisms of leaf senescence in terms of systems-level spatiotemporal changes, presenting them from the perspectives of life history strategy and evolution.
Environmental and Experimental Botany
Leaf senescence is a destructive process that allows the efficient recycling of nutrients from dying leaves to growing parts of the plant. It is the final stage of leaf development that can be induced in response to stress. This makes leaf senescence an adaptive process that is highly beneficial for whole plant survival under unpredictable environmental conditions. Thus, the manipulation of this process has the potential to improve crop plants to become more climate resilient. In this review we compare leaf senescence processes between distantly related species to identify knowledge gaps and opportunities for plant improvement strategies. We describe that main signalling pathways controlled by carbohydrates, reactive oxygen species and hormones are conserved. However, the role of ethylene in age-induced leaf senescence in cereals is obscure. Moreover, downstream senescence regulatory signalling events are largely unknown, and these may be considerably different between members of annual dicots and cereals. Because leaf senescence regulation is so intricately connected to basic metabolic and developmental processes, we propose to increase research efforts to discover natural variation in senescence regulation and pinpoint gene variants that are tried and tested in nature.
Transcription Factors Associated with Leaf Senescence in Crops
Plants, 2019
Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables. Different crops present a delay in leaf senescence with an important impact on grain yield trough the maintenance of the photosynthetic leaf area during the reproductive stage. Additionally, because of the temporal gap between the onset and phenotypic detection of the senescence process, candidate genes are key tools to enable the early detection of this process. In this sense and given the importance of some transcription factors as hub genes in senescence pathways, we present a comprehensive review on senescence-associated transcription factors, in model plant species and in agronomic relevant crops. This review will contribute to the knowledge of leaf senescence process in crops, thus providing a valuable tool to assist molecular crop breeding.
A Regulatory Circuit Integrating Stress-Induced with Natural Leaf Senescence
Plant Science - Structure, Anatomy and Morphogenesis in Plants Cultured in Vivo and in Vitro [Working Title], 2019
Any condition that disrupts the ER homeostasis activates a cytoprotective signaling cascade, designated as the unfolded protein response (UPR), which is transduced in plant cells by a bipartite signaling module. Activation of IRE1/ bZIP60 and bZIP28/bZIP17, which represent the bipartite signaling arms and serve as ER stress sensors and transducers, results in the upregulation of ER protein processing machinery-related genes to recover from stress. However, if the ER stress persists and the cell is unable to restore ER homeostasis, programmed cell death signaling pathways are activated for survival. Here, we describe an ER stress-induced plant-specific cell death program, which is a shared response to multiple stress signals. This signaling pathway was first identified through genome-wide expression profile of differentially expressed genes in response to combined ER stress and osmotic stress. Among them, the development and cell death domain-containing N-rich proteins (DCD/NRPs), NRP-A and NRP-B, and the transcriptional factor GmNAC81 were selected as mediators of cell death in plants. These genes were used as targets to identify additional components of the cell death pathway, which is described here as a regulatory circuit that integrates a stress-induced cell death program with leaf senescence via the NRP-A/NRP-B/GmNAC81:GmNAC30/VPE signaling module.
Regulatory mechanisms associating innate leaves senescence of incongruent species
International Journal of Scientific Reports
Senescence is the final developmental phase of a plant which starts with nutrient salvage and ends with cell death. The first visible event during senescence is leaf yellowing, which typically starts at the leaf margins and progresses to the interior of the leaf blade. 1 Leaf senescence is an integrated response of leaf cells to age information and other internal and environmental signals. This integrated senescence response provides plants with optimal fitness by incorporating the environmental and endogenous status of plants in a given ecological setting ABSTRACT Background: Senescence is the final developmental phase of a leaf which starts with nutrient salvage and ends with cell death. The first visible event during senescence is leaf yellowing, which typically starts at the leaf margins and progresses to the interior of the leaf blade. Though, regulators of senescence adopt a range of physiological and developmental mechanisms which undergo senescence of plant. Methods: Leaves of different species were collected from the green house, and then rinsed several times with sterilized distilled water. For discs of leaves, two same sized leaves were collected and made the same sized discs. The samples were infiltrated with specific senescence inhibitor. The discs then kept in distilled water and placed under condition at 25 0 C. Observed the phenotypes at two days interval, molecular based analysis was perfumed at 8 th day of infiltration. Results: In this study, innate senescence approach comparison to inhibitor based senescence has been performed in order to check its consequences on leaves of different crops such as; cauliflower, apple, tobacco, rose and Arabidopsis. Arabidopsis and apple have resulted in a narrative phenotype with high level of ion leakage. While in case of rose and cauliflower, the phenotype was characterized with yellow fading of leaves. Interestingly, in the tobacco plants, intense yellowing of leaves developed along bottom. Further, in order to confirm the efficiency and pattern of senescence, we had also assessed the changes occurred during leaf senescence via ion leakage and chlorophyll content, expression of SAG12 (a senescence associated gene) and (PSA) photosynthetic associated genes expression as markers. Conclusions: It has been noted that progression of leaf senescence is a very critical and important factors affecting plant growth and development. It can be stated that initiation of leaves senescence can be controlled by using specific inhibitor.