Roberts et al. (1987) (original) (raw)

Photoinhibition and loss of photosystem II reaction centre proteins during senescence of soybean leaves. Enhancement of photoinhibition by the 'stay-green' mutation cytG

Physiologia Plantarum, 2002

The 'stay-green' mutation cytG in soybean (Glycine max) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b6/f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degra

‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves

The Plant Journal, 2008

Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small 'senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30°C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves.

Preservation of photosynthetic electron transport from senescence-induced inactivation in primary leaves after decapitation and defoliation of bean plants

Journal of plant physiology, 2008

The comparative effects of decapitation and defoliation on the senescence-induced inactivation of photosynthetic activity in primary leaves of bean plants were investigated. Decapitation was performed during different phases of bean plant ontogenesis, immediately after the appearance of the 1st, 2nd, 3rd and 4th composite leaf. In addition, we examined a variant with primary leaves and stem with an apical bud, but without composite leaves, i.e. defoliated plants. Analyses of chlorophyll fluorescence, millisecond delayed fluorescence and absorption at 830nm in primary leaves were undertaken to investigate the alterations in photosystems II and I electron transport during the decapitation-induced delayed senescence in the non-detached leaves. Analysis of the OKJIP transients using the JIP-test (see [Strasser R, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, editors. Chlorophyll a fluorescence: a signature of photo...

Leaf Senescence: The Chloroplast Connection Comes of Age

Plants

Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chlo...

In vivo inhibition of cysteine proteases provides evidence for the involvement of ‘senescence-associated vacuoles’ in chloroplast protein degradation during dark-induced senescence of tobacco leaves

Journal of Experimental Botany, 2013

Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescenceassociated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40 kDa and 33 kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

Lipid metabolism during plant senescence

Progress in Lipid Research, 1998

Impairment of lipid-protein particle release from senescing membranes 131 C. Localization of membrane protein catabolites in cytosolic lipid-protein particles 133 D. Cytosolic lipid-protein particles bear resemblance to oil bodies 133 V. Ontogeny of lipid-protein particles and the basis for impairment of blebbing in senescing membranes 134 A. Sites of ontogeny 135 B. Physiological signi®cance of lipid-protein particle formation and its impairment with advancing senescence 135 VI. Metabolism of thylakoid lipids in senescing leaves 136 A. Loss of photosynthetic electron transport precedes changes in thylakoid lipid composition,¯uidity and phase properties 136 B. Chloroplast lipid-protein particles 137 VII. Conclusions

Age-dependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana

Photosynthesis Research, 2013

Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energyharvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v /F m ) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO 2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.

Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence

Plant Biology, 2010

One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::δ-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.