Mechanical behaviour of polymers at high rates of strain (original) (raw)

Abstract

The stress-strain behaviours of polycarbonate (PC) and polyvinylidene difluoride (PVDF) have been measured over a range of strain rates at room temperature and a range of temperatures at high strain rate. Both materials show an approximately bilinear dependence of yield stress on strain rate over the rates examined. The experiments at different temperatures allow the high strain rate glass and transitions to be identified in PC, and the melting point and glass transition to be identified in PVDF. These can be confirmed by comparison to Dynamic Mechanical Analysis (DMA) measurements on the materials. Applying a timetemperature superposition to the data shows that these transitions are the cause of the bilinearity in the strain rate dependence of the materials. The behaviour of nominal (or engineering) stress in PC is also examined.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. Siviour, C.R., et al., Polymer, 46 (2005), p. 12546-12555.
  2. Briscoe, B.J. and I.M. Hutchings, Polymer, 17 (1976), p. 1099-1102.
  3. Chou, S.C., K.D. Robertson, and J.H. Rainey, Exper. Mech., 13 (1973), p. 422-432.
  4. Kukureka, S.N. and I.M. Hutchings, in Proc. 7th Int. Conf on High Energy Rate Fabrication, T.Z. Blazynski, Editor. 1981, University of Leeds: Leeds. p. 29-38.
  5. Rietsch, F. and B. Bouette, Eur. Polym. J., 26 (1990), p. 1071-1075.
  6. Walley, S.M. and J.E. Field, DYMAT Journal, 1 (1994), p. 211-228.
  7. Walley, S.M., et al., Phil. Trans. R. Soc. Lond. A, 328 (1989), p. 1-33.
  8. Dioh, N.N., et al., J. Phys. IV France Colloq. C8 (DYMAT 94), 4 (1994), p. 119-124.
  9. Dioh, N.N., P.S. Leevers, and J.G. Williams, Polymer, 34 (1993), p. 4230-4234.
  10. Briscoe, B.J. and R.W. Nosker, Wear, 95 (1984), p. 241-262.
  11. Briscoe, B.J. and R.W. Nosker, Polymer Commun., 26 (1985), p. 307-308.
  12. Gorham, D.A., J. Phys. D: Appl. Phys., 24 (1991), p. 1489-1492.
  13. Harding, J., "The effect of high strain rate on material properties", in Materials at High Strain Rates, T.Z. Blazynski, Editor. 1987, Elsevier Applied Science: London. p. 133-186.
  14. Zerilli, F.J. and R.W. Armstrong, Acta metall. mater., 40 (1992), p. 1803-1808.
  15. Al-Maliky, N., et al., J. Mater. Sci. Letts, 17 (1998), p. 1141-1143.
  16. Hamdan, S. and G.M. Swallowe, J. Mater. Sci., 31 (1996), p. 1415-1423.
  17. Swallowe, G.M. and J.O. Fernandez, J. Phys. IV France Pr. 9 (DYMAT 2000), 10 (2000), p. 311-316.
  18. Swallowe, G.M., J.O. Fernandez, and S. Hamdan, J. Phys. IV France Colloq. C3 (EURODYMAT 97), 7 (1997), p. 453-458.
  19. Swallowe, G.M. and S.F. Lee, J. Phys. IV France, 110 (2003), p. 33-38.
  20. Trautmann, A., Siviour, C.R., Walley, S.M., and J.E. Field, Int. J. Impact Engng 31 (2005), p. 523-544.
  21. Bauwens, J.C., J. Mater. Sci., 7 (1972), p. 577-584.
  22. Bauwens-Crowet, C., J. Mater. Sci., 8 (1973), p. 968-979.
  23. Bauwens-Crowet, C., J.C. Bauwens, and G. Homès, J. Mater. Sci., 7 (1972), p. 176 -183.
  24. Blumenthal, W.R., et al., in Shock Compression of Condensed Matter -2001, M.D. Furnish, N.N. Thadhani, and Y. Horie, Editors. 2002, American Institute of Physics: Melville, NY. p. 665-668.
  25. Hutchings, I.M., J. Mech. Phys. Solids, 26 (1978), p. 289.