Second-order correlation function of a phase fluctuating Bose-Einstein condensate (original) (raw)
The coherence properties of phase fluctuating Bose-Einstein condensates are studied both theoretically and experimentally. We derive a general expression for the N -particle correlation function of a condensed Bose gas in a highly elongated trapping potential. The second order correlation function is analyzed in detail and an interferometric method to directly measure it is discussed and experimentally implemented. Using a Bragg diffraction interferometer, we measure intensity correlations in the interference pattern generated by two spatially displaced copies of a parent condensate. Our experiment demonstrates how to characterize the second order correlation function of a highly elongated condensate and to measure its phase coherence length.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.