A gold-gold oil microtrench electrode for liquid-liquid anion transfer voltammetry (original) (raw)

ELECTROPHORESIS, 2013

Abstract

Two flat gold electrodes are placed vis-à-vis with an epoxy spacer layer that is etched out to give a ca. 100 μm-deep electrochemically active trench. A water-insoluble oil phase, here the redox system N,N-diethyl-N'N'-didodecyl-phenylenediamine (DDPD) in 4-(3-phenylpropyl)-pyridine (PPP), is immobilized into the trench to allow anion transfer upon oxidation of DDPD (oil) to DDP⁺ (oil). In "mono-potentiostatic mode" quantitative transfer/expulsion of anions into the trench oil phase occurs. However, in "bi-potentiostatic mode" feedback currents dominated by rapid plate-to-plate diffusion normal to the electrode surfaces are observed. Comparison of "normal" diffusion and "lateral" diffusion shows that the rate of diffusion-migration charge transport across the oil film is anion hydrophobicity dependent.

Sara Dale hasn't uploaded this paper.

Let Sara know you want this paper to be uploaded.

Ask for this paper to be uploaded.