From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space (original) (raw)

Characterization of transition to chaos with multiple positive Lyapunov exponents by unstable periodic orbits

Ruslan Davidchack

2000

View PDFchevron_right

Chaos beyond linearized stability analysis: Folding of the phase space and distribution of Lyapunov exponents

Ilya Ponomarev

Physics Letters A, 2007

View PDFchevron_right

The d∞ parameter to characterise chaotic dynamics

Maide Bucolo

2000

View PDFchevron_right

On the special role of symmetric periodic orbits in a chaotic system

Luis Benet, T. Seligman

Physica D: Nonlinear Phenomena, 1999

View PDFchevron_right

On the geometrical characteristics of chaotic dynamics, I

Serge Preston

International Journal of Engineering Science, 2003

View PDFchevron_right

Analytical description of the structure of chaos

Mirella Harsoula

Journal of Physics A: Mathematical and Theoretical, 2015

View PDFchevron_right

Analytical study of the structure of chaos near unstable points

Christos Efthymiopoulos

arXiv: Chaotic Dynamics, 2014

View PDFchevron_right

Persistent chaos in high dimensions

James Crutchfield

Physical Review E, 2006

View PDFchevron_right

The natural measure of nonattracting chaotic sets and its representation by unstable periodic orbits

Mukesh Dhamala

2002

View PDFchevron_right

Parametric evolution of unstable dimension variability in coupled piecewise-linear chaotic maps

Sergio R Lopes, Sandro Ely de Souza Pinto

Physical Review E, 2011

View PDFchevron_right

Bifurcations and Periodic Orbits in Chaotic Maps

Krzysztof Stefański

Open Systems & Information Dynamics (OSID), 2001

View PDFchevron_right

Numerical Computation of Lyapunov Exponents and Dimension in Nonlinear Dynamics and Chaos

Abayomi Oke

2012

View PDFchevron_right

Characterizing weak chaos using time series of Lyapunov exponents

Eduardo Altmann, Marcus Beims, Rafael Marques, Cesar Manchein

Physical Review E, 2015

View PDFchevron_right

Discontinuous pattern of cumulative separation between orbits of chaotic transient

Vladimir Paar

Physics Letters a, 1997

View PDFchevron_right

Structure of characteristic Lyapunov vectors in spatiotemporal chaos

Diego LV

Physical Review E, 2008

View PDFchevron_right

Numerical orbits of chaotic processes represent true orbits

James Yorke

Bulletin of the American Mathematical Society, 1988

View PDFchevron_right

Towards complete detection of unstable periodic orbits in chaotic systems

Ruslan Davidchack

Physics Letters A, 2001

View PDFchevron_right

Unstable periodic orbits and the dimensions of multifractal chaotic attractors

Edward Ott

Physical review. A, 1988

View PDFchevron_right

Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices

Miguel Rodríguez

Physical Review E, 2007

View PDFchevron_right

Local Stable or Unstable Regions in 2-Dimensional Chaotic Forms: Examples and Simulations

Christos H Skiadas

Acta Physica Polonica A, 2013

View PDFchevron_right

Characterization of Chaos: A New, Fast, and Effective Measure

Ioannis Sideris

Annals of the New York Academy of Sciences, 2005

View PDFchevron_right

Tracking unstable periodic orbits in nonstationary high-dimensional chaotic systems:Method and experiment

William Ditto

Physical Review E, 1997

View PDFchevron_right

Controlling chaos in high dimensions: Theory and experiment

Mingzhou Ding

1996

View PDFchevron_right

Spatially Chaotic Structures

Rolf Schilling

Nonlinear Dynamics in Solids, 1992

View PDFchevron_right

Stability in Chaos

Alain Pumir

arXiv (Cornell University), 2017

View PDFchevron_right

Transition to High-Dimensional Chaos Through Quasiperiodic Motion

esteban sanchez

International Journal of Bifurcation and Chaos, 2001

View PDFchevron_right

Persistent stability of a chaotic system

Alain Pumir

Physica A: Statistical Mechanics and its Applications, 2018

View PDFchevron_right

An Aperiodic Stable Chaos with Lyapunov Exponents in Time Series

zahra jafri

American Scientific Research Journal for Engineering, Technology, and Sciences, 2016

View PDFchevron_right