Synthesis of degenerated libraries of the ras-binding domain of raf and rapid selection of fast-folding and stable clones with the dihydrofolate reductase protein fragment complementation assay (original) (raw)
Related papers
Selection for improved protein stability by phage display
A library of mutants of a single-chain Fv fragment (scFv) was generated by a combination of directed and random mutagenesis, using oligonucleotides randomized at defined positions and two rounds of DNA shuffling. The library was based on the already well folding and stable scFv fragment 4D5Flu. In order to further improve this framework and test the efficiency of various selection strategies, phage display selection was carried out under different selective pressures for higher thermodynamic stability. Incubation of the display phages at elevated temperatures was compared to exposure of the phages to high concentrations of guanidinium chloride. Temperature stress-guided selection yielded the most stable scFv mutant after two rounds of mutagenesis and selection, due to the irreversibility of the unfolding process. It possessed only two mutations (His(L27d)Asn and Phe(L55)Val) and showed a thermodynamic stability improved by roughly 4 kcal/mol, threefold better expression yields in Escherichia coli as well as a 20-fold better binding constant than the 4D5Flu wild-type. The selection results obtained in this study delineate the advantages, disadvantages and limitations of different stability stress selection methods in phage display. Copyright 1999 Academic Press.
Display of Ras on filamentous phage through cysteine replacement
Biochimie, 1999
Phage display technology has been used in a variety of contexts to understand and manipulate biomolecular interactions between proteins and other biomolecules. In this paper we describe the establishment of a phage display system for elucidation of the interactions between the GTPase Ras and its panel of effectors. It is shown how technical problems associated with phage display of a protein with unpaired cysteines, likely to be caused by the oxidizing environment of the bacterial periplasm into which the protein is directed, can be overcome by cysteine replacement based on functional and structural studies. First, the catalytic domain (residues 1-166) of mammalian H-Ras (Ras) was observed to be displayed on phage in an incorrect conformation not detectable by antibodies recognizing conformational epitopes on Ras. Although truncation of the phage coat protein used as fusion partner (g3p) resulted in minor improvements in the display, Ras was tailored for phage display by cysteine replacement. By replacing the three cysteines at positions 51, 80 and 118 of Ras with the corresponding residues in Saccharomyces cerevisiae RAS1, the resulting fusion-phage is recognized by the conformation-dependent anti-Ras antibodies. Furthermore, display of cysteine-free Ras is demonstrated by GTP-analogue dependent binding to the Ras-binding domain of the Ras-effector Raf1. These data pave the way for analysis of Ras-effector interactions using phage display technology yet demonstrate that phage display of proteins with normally reduced cysteines should be approached with caution. © 1999 Société française de biochimie et biologie moléculaire/Éditions scientifiques et médicales Elsevier SAS phage display / Ras / Raf1 / disulphide bridge / mutagenesis
Rapid Identification of Small Binding Motifs with High-Throughput Phage Display
Chemistry & Biology, 2002
and Development for the optimization of loops within proteins [4] and for the identification of novel ligands [2]. M13 lends itself Genentech 1 DNA Way to this process because engineering the viral DNA can lead to the fusion of peptides or proteins of interest South San Francisco, California 94080
A phage display system for studying the sequence determinants of protein folding.
We have developed a phage display system that provides a means to select variants of the IgG binding domain of peptostreptococcal protein L that fold from large combinatorial libraries. The premise underlying the selection scheme is that binding of protein L to IgG requires that the protein be properly folded. Using a combination of molecular biological and biophysical methods, we show that this assumption is valid. First, the phage selection procedure strongly selects against a point mutation in protein L that disrupts folding but is not in the IgG binding interface. Second, variants recovered from a library in which the first third of protein L was randomized are properly folded. The degree of sequence variation in the selected population is striking: the variants have as many as nine substitutions in the 14 residues that were mutagenized. The approach provides a selection for "foldedness" that is potentially applicable to any small binding protein.
A Novel Way to Generate and Use Combinatorial Phage-Display Libraries
Biotecnologia Aplicada
This work describes the Cosmix-Plexing® procedure. It provides a novel way to use and generate combinatorial libraries of peptides displayed on the surface of filamentous phages. Using the Cosmix-Plexing approach, the left and right sections of the variable domain can be induced by the use of type II restriction enzymes. Thus, a population with optimized sequences for a larger number of amino acid residues can be generated. It can also simplify the production of extension libraries by the introduction of specific cassettes into existing libraries. This technology enabled us to efficiently isolate ligands having a great affinity for several target molecules of the EVH1 of VesI domain from an initial library that was rich in proline.
Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display
There is an ever-increasing demand to select specific, high-affinity binding molecules against targets of biomedical interest. The success of such selections depends strongly on the design and functional diversity of the library of binding molecules employed, and on the performance of the selection strategy. We recently developed SRP phage display that employs the cotranslational signal recognition particle (SRP) pathway for the translocation of proteins to the periplasm. This system allows efficient filamentous phage display of highly stable and fast-folding proteins, such as designed ankyrin repeat proteins (DARPins) that are virtually refractory to conventional phage display employing the post-translational Sec pathway. DARPins comprise a novel class of binding molecules suitable to complement or even replace antibodies in many biotechnological or biomedical applications. So far, all DARPins have been selected by ribosome display. Here, we harnessed SRP phage display to generate a phage DARPin library containing more than 10(10) individual members. We were able to select well behaved and highly specific DARPins against a broad range of target proteins having affinities as low as 100 pM directly from this library, without affinity maturation. We describe efficient selection on the Fc domain of human IgG, TNFalpha, ErbB1 (EGFR), ErbB2 (HER2) and ErbB4 (HER4) as examples. Thus, SRP phage display makes filamentous phage display accessible for DARPins, allowing, for example, selection under harsh conditions or on whole cells. We envision that the use of SRP phage display will be beneficial for other libraries of stable and fast-folding proteins.
Acta biochimica Polonica, 2013
Tetratricopeptide repeat (TPR) is a structural motif mediating variety of protein-protein interactions. It has a high potential to serve as a small, stable and robust, non-immunoglobulin ligand binding scaffold. In this study, we showed the consensus approach to design the novel protein called designed tetratricopeptide repeat (dTPR), composed of three repeated 34 amino-acid tetratricopeptide motifs. The designed sequence was efficiently overexpressed in E. coli and purified to homogeneity. Recombinant dTPR is monomeric in solution and preserves its secondary structure within the pH range from 2.0 to 11.0. Its denaturation temperature at pH 7.5 is extremely high (104.5°C) as determined by differential scanning calorimetry. At extreme pH values the protein is still very stable: denaturation temperature is 90.1°C at pH 2.0 and 60.4°C at pH 11. Chemical unfolding of the dTPR is a cooperative, two-state process both at pH 7.5 and 2.0. The free energy of denaturation in the absence of de...
Journal of Nucleic Acids, 2012
Phage display technology is undoubtedly a powerful tool for affinity selection of target-specific peptide. Commercially available premade phage libraries allow us to take screening in the easiest way. On the other hand, construction of a custom phage library seems to be inaccessible, because several practical tips are absent in instructions. This paper focuses on what should be born in mind for beginners using commercially available cloning kits (Ph.D. with type 3 vector and T7Select systems for M13 and T7 phage, respectively). In the M13 system, Pro or a basic amino acid (especially, Arg) should be avoided at the N-terminus of peptide fused to gp3. In both systems, peptides containing odd number(s) of Cys should be designed with caution. Also, DNA sequencing of a constructed library before biopanning is highly recommended for finding unexpected bias.
Phage display combinatorial libraries of short peptides: ligand selection for protein purification
Enzyme and Microbial Technology, 2001
A library of heptapeptides displayed on the surface of filamentous phage M13 was evaluated as a potential source of affinity ligands for the purification of Rhizomucor miehei lipase. Two independent selection (biopanning) protocols were employed: the enzyme was either physically adsorbed on polystyrene or chemically immobilized on small magnetic beads. From screening with the polystyrene-adsorbed lipase it was found that there was a rapid enrichment of the library with "doublet" clones i.e. the phage species which carried two consecutive sequences of heptapeptides, whilst no such clones were observed from the screening using lipase attached to magnetic beads. The binding of the best clones to the enzyme was unambiguously confirmed by ELISA. However the synthetic heptapeptide of identical sequence to the best "monomeric" clone did not act as a satisfactory affinity ligand after immobilization on Sepharose. This indicated that the interaction with lipase was due to both the heptapeptide and the presence of a part of the phage coat protein. This conclusion was further verified by immobilizing the whole phage on the surface of magnetic beads and using the resulting conjugate as an affinity adsorbent. The scope of application of this methodology and the possibility of preparing phage-based affinity materials are briefly discussed.