Axonal Transport Defects in Neurodegenerative Diseases (original) (raw)

Axonal transport defects: a common theme in neurodegenerative diseases

Acta Neuropathologica, 2005

A core pathology central to most neurodegenerative diseases is the misfolding, fibrillization and aggregation of disease proteins to form the hallmark lesions of specific disorders. The mechanisms underlying these brain-specific neurodegenerative amyloidoses are the focus of intense investigation and defective axonal transport has been hypothesized to play a mechanistic role in several neurodegenerative disorders; however, this hypothesis has not been extensively examined. Discoveries of mutations in human genes encoding motor proteins responsible for axonal transport do provide direct evidence for the involvement of axonal transport in neurodegenerative diseases, and this evidence is supported by studies of animal models of neurodegeneration. In this review, we summarize recent findings related to axonal transport and neurodegeneration. Focusing on specific neurodegenerative diseases from a neuropathologic perspective, we highlight discoveries of human motor protein mutations in some of these diseases, as well as illustrate new insights from animal models of neurodegenerative disorders. We also review the current understanding of the biology of axonal transport including major recent findings related to slow axonal transport.

Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases

Neurobiology of Disease, 2017

Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.

Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research?

Neurobiology of Disease

Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).

Dysregulation of axonal transport and motorneuron diseases

Biology of the Cell, 2011

MNDs (motorneuron diseases) are neurodegenerative disorders in which motorneurons located in the motor cortex, in the brainstem and in the spinal cord are affected. These diseases in their inherited or sporadic forms are mainly characterized by motor dysfunctions, occasionally associated with cognitive and behavioural alterations. Although these diseases show high variability in onset, progression and clinical symptoms, they share common pathological features, and motorneuronal loss invariably leads to muscle weakness and atrophy. One of the most relevant aspect of these disorders is the occurrence of defects in axonal transport, which have been postulated to be either a direct cause, or a consequence, of motorneuron degeneration. In fact, due to their peculiar morphology and high energetic metabolism, motorneurons deeply rely on efficient axonal transport processes. Dysfunction of axonal transport is known to adversely affect motorneuronal metabolism, inducing progressive degeneration and cell death. In this regard, the understanding of the fine mechanisms at the basis of the axonal transport process and of their possible alterations may help shed light on MND pathological processes. In the present review, we will summarize what is currently known about the alterations of axonal transport found to be either causative or a consequence of MNDs.

Molecular landmarks along the axonal route: axonal transport in health and disease

Current Opinion in Cell Biology, 2008

Axonal transport of organelles has emerged as a key process in the regulation of neuronal differentiation and survival. Several components of this specialised transport machinery, their regulators and vesicular cargoes are mutated or altered in many neurodegenerative conditions. The molecular characterisation of these mechanisms has furthered our understanding of neuronal homeostasis, providing insights into the spatio-temporal control of membrane traffic and signalling in neurons with a precision not achievable in other cellular systems. Here, we summarise the recent advances in the field of axonal trafficking of different organelles, and the essential role of motor and adaptor proteins in this process.

Axonal transport and neurological disease

Nature Reviews Neurology

Axonal transport is the process whereby motor proteins actively navigate microtubules to deliver diverse cargoes, such as organelles, from one end of the axon to the other, and is widely regarded as essential for nerve development, function and survival. Mutations in genes encoding key components of the transport machinery , including motor proteins, motor adaptors and microtubules, have been discovered to cause neurological disease. Moreover, disruptions in axonal cargo trafficking have been extensively reported across a wide range of nervous system disorders. However, whether these impairments have a major causative role in, are contributing to or are simply a consequence of neuronal degeneration remains unclear. Therefore, the fundamental relevance of defective trafficking along axons to nerve dysfunction and pathology is often debated. In this article, we review the latest evidence emerging from human and in vivo studies on whether perturbations in axonal transport are indeed integral to the pathogenesis of neurological disease.

Axonal Transport and Alzheimer's Disease

Annual Review of Biochemistry, 2006

In contrast to most eukaryotic cells, neurons possess long, highly branched processes called axons and dendrites. In large mammals, such as humans, some axons reach lengths of over 1 m. These lengths pose a major challenge to the movement of proteins, vesicles, and organelles between presynaptic sites and cell bodies. To overcome this challenge axons and dendrites rely upon specialized transport machinery consisting of cytoskeletal motor proteins generating directed movements along cytoskeletal tracks. Not only are these transport systems crucial to maintain neuronal viability and differentiation, but considerable experimental evidence suggests that failure of axonal transport may play a role in the development or progression of neurological diseases such as Alzheimer's disease.

Towards a cure for dementia: the role of axonal transport in Alzheimer’s disease

Alzheimer’s disease is an incurable, fatal illness characterised by years of progressive mental decline. It afflicts half a million people in the UK - more than any other dementia. The primary risk factor is old age so this number is rising as we live longer. Current treatment is palliative while more potent drugs have encountered problems during clinical trials. It is known that the disease results from brain deterioration associated with the formation of microscopic lesions. Genetic mutations cause a small minority of cases but our knowledge of the underlying biological mechanisms is limited. The key to improved understanding may be a process vital to brain cells called axonal transport. Disruption of axonal transport seems to be an early event in the progression of the disease and is linked to lesion formation and brain dysfunction so a full investigation of this process should lead to a cure, if not prevention. Keywords: Alzheimer’s disease, axonal transport, kinesin, microtubule, amyloid hypothesis, tau hypothesis Wilson RJ (2008) Towards a cure for dementia: the role of axonal transport in Alzheimer’s disease. Science Progress 91(1), 65–80 PMID: 18453283