Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity (original) (raw)
Related papers
2009
Estimating rate functions underlying neural point processes is essential for characterizing the firing patterns of cortical neurons involved in sensory and motor processing. This paper introduces a new method for directly estimating neuronal firing rates from a compressed representation of their extracellular recordings. The approach is based on extending a near-optimal sparse representation of the extracellular recordings to time scales matching those of the underlying rate functions, thereby performing the same role as a kernel-density estimator but at a much lower computational cost. Experimental results demonstrate that this method achieves comparable performance to the conventional Gaussian kernel estimation methods at a fraction of the computational cost. This makes it suitable to Brain Machine Interface applications where real time decoding of neural activity for neuro-motor prosthetic control using firing rate estimates is strongly desired.
Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes
Neural Information Processing Systems, 2007
Neural spike trains present challenges to analytical efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of the spike train's underlying firing rate. Current techniques to find time-varying firing rates require ad hoc choices of parameters, offer no confidence intervals on their estimates, and can obscure potentially important single trial variability. We present a new method, based on a Gaussian Process prior, for inferring probabilistically optimal estimates of firing rate functions underlying single or multiple neural spike trains. We test the performance of the method on simulated data and experimentally gathered neural spike trains, and we demonstrate improvements over conventional estimators.
Neuronal Spike Train Analysis in Likelihood Space
PLoS ONE, 2011
Background: Conventional methods for spike train analysis are predominantly based on the rate function. Additionally, many experiments have utilized a temporal coding mechanism. Several techniques have been used for analyzing these two sources of information separately, but using both sources in a single framework remains a challenging problem. Here, an innovative technique is proposed for spike train analysis that considers both rate and temporal information. Methodology/Principal Findings: Point process modeling approach is used to estimate the stimulus conditional distribution, based on observation of repeated trials. The extended Kalman filter is applied for estimation of the parameters in a parametric model. The marked point process strategy is used in order to extend this model from a single neuron to an entire neuronal population. Each spike train is transformed into a binary vector and then projected from the observation space onto the likelihood space. This projection generates a newly structured space that integrates temporal and rate information, thus improving performance of distribution-based classifiers. In this space, the stimulus-specific information is used as a distance metric between two stimuli. To illustrate the advantages of the proposed technique, spiking activity of inferior temporal cortex neurons in the macaque monkey are analyzed in both the observation and likelihood spaces. Based on goodness-of-fit, performance of the estimation method is demonstrated and the results are subsequently compared with the firing rate-based framework. Conclusions/Significance: From both rate and temporal information integration and improvement in the neural discrimination of stimuli, it may be concluded that the likelihood space generates a more accurate representation of stimulus space. Further, an understanding of the neuronal mechanism devoted to visual object categorization may be addressed in this framework as well.
Analysis of Neuronal Spike Trains, Deconstructed
Neuron, 2016
As information flows through the brain, neuronal firing progresses from encoding the world as sensed by the animal to driving the motor output of subsequent behavior. One of the more tractable goals of quantitative neuroscience is to develop predictive models that relate the sensory or motor streams with neuronal firing. Here we review and contrast analytical tools used to accomplish this task. We focus on classes of models in which the external variable is compared with one or more feature vectors to extract a low-dimensional representation, the history of spiking and other variables are potentially incorporated, and these factors are nonlinearly transformed to predict the occurrences of spikes. We illustrate these techniques in application to datasets of different degrees of complexity. In particular, we address the fitting of models in the presence of strong correlations in the external variable, as occurs in natural sensory stimuli and in movement. Spectral correlation between predicted and measured spike trains is introduced to contrast the relative success of different methods.
A spike train analysis for correlating burst firings in neurons
Neurocomputing, 2001
We introduced a multiple single-unit spike train analysis technique to deduce the burst "ring patterns in one neuron that are temporally correlated to the spike generation in another neuron. This analysis considers the contribution of temporal summation of burst "rings in one neuron that is correlated to the probability of spike "ring in another neuron. The result shows that the analysis can extract the number of spikes and the duration of burst pattern.
Frontiers in Systems Neuroscience, 2019
Responses of neuronal populations play an important role in the encoding of stimulus related information. However, the inherent multidimensionality required to describe population activity has imposed significant challenges and has limited the applicability of classical spike train analysis techniques. Here, we show that these limitations can be overcome. We first quantify the collective activity of neurons as multidimensional vectors (patterns). Then we characterize the behavior of these patterns by applying classical spike train analysis techniques: peri-stimulus time histograms, tuning curves and auto-and cross-correlation histograms. We find that patterns can exhibit a broad spectrum of properties, some resembling and others substantially differing from those of their component neurons. We show that in some cases pattern behavior cannot be intuitively inferred from the activity of component neurons. Importantly, silent neurons play a critical role in shaping pattern expression. By correlating pattern timing with local-field potentials, we show that the method can reveal fine temporal coordination of cortical circuits at the mesoscale. Because of its simplicity and reliance on well understood classical analysis methods the proposed approach is valuable for the study of neuronal population dynamics.
Fitting neuron models to spike trains
Frontiers in …, 2011
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.
Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation
Mathematical Biosciences and Engineering, 2013
Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation . In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.