Genotoxicity of silver nanoparticles in Allium cepa (original) (raw)

Environmental Nanoparticles Interactions with Plants: Morphological, Physiological, and Genotoxic Aspects

Journal of Botany, 2012

Nanoparticles (NPs) are characterized by their small size (less than 100 nm) and large surface area, which confer specific physicochemical properties as strength, electrical, and optical features. NPs can be derived from natural or anthropic sources, such as engineered or unwanted/incidental NPs. The composition, dimension, and morphology of engineered NPs enable their use in a variety of areas, such as electronic, biomedical, pharmaceutical, cosmetic, energy, environmental, catalysis, and materials science. As nanotechnology is an innovative and scientific growth area with an exponential production, more information is needed concerning the impacts of these nanomaterials (NMs) in the environment and, particularly, in animals/humans health and in plants performance. So, research on NPs as emerging contaminants is therefore a new field in environmental health. This minireview describes, briefly, the NPs characterization and their occurrence in the environment stating air, water, and ...

Genotoxicity of Silver Nanoparticles in Vicia faba: A Pilot Study on the Environmental Monitoring of Nanoparticles

International Journal of Environmental Research and Public Health, 2012

The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there have been some attempts to determine the toxic effects of AgNPs in mammalian and human cell-lines, there is little information on plants which play a vital role in ecosystems. The study reports the use of Vicia faba root-tip meristem to investigate the genotoxicity of AgNPs under modified GENE-TOX test conditions. The root tip cells of V. faba were treated with four different concentrations of engineered AgNPs dispersion to study toxicological endpoints such as mitotic index (MI), chromosomal aberrations (CA) and micronucleus induction (MN). For each concentration, five sets of microscopy observations were carried out. The results demonstrated that AgNPs exposure significantly increased (p < 0.05) the number of chromosomal aberrations, micronuclei, and decreased the MI in exposed groups compared to control. From this study we infer that AgNPs might have penetrated the plant system and may have impaired mitosis causing CA and MN. The results of this study demonstrate that AgNPs are genotoxic to plant cells. Since plant assays have been integrated as a genotoxicity component in risk assessment for detection of environmental mutagens, they should be given full consideration when evaluating the overall toxicological impact of the nanoparticles in the environment.

Toxic effects of silver nanoparticles on the germination and root development of lettuce (Lactuca sativa)

Australian Journal of Botany, 2020

The advancement of nanotechnology has increased use of nanoparticles in industrial scale. Among the most used nanoparticles are those silver-based. Large-scale use can raise levels of these nanoparticles in aquatic environments, which, in turn, presents potential risks to aquatic organisms and ecosystems, causing undesired environmental impacts. To evaluate the potential risk of the silver nanoparticles (AgNPs) interaction with plants, seeds of Lactuca sativa L. (Asteraceae) were exposed to different concentrations of AgNPs (12.5, 25, 50, 100 ppm), using the percentage of germinated seeds and morphological changes in the root as toxicity criterion. Only at the maximum concentration of AgNPs (100 ppm), there is a negative effect on root growth in relation to the positive control (distilled water). These negative effects may be related to the production of reactive oxygen species (ROS) caused by the dissolution of Ag 0 in Ag +. Other concentrations had a positive effect on root growth, although not significant. Scanning electron microscopy (SEM) images showed morphological changes in the root surface exposed to the concentration of 100 ppm of AgNPs, resulting in root deformation. The accumulation of silver nanoparticles (AgNPs) was observed using transmission electron microscopy (TEM). AgNPs were found in the vacuoles, cell wall, middle lamella and cytoplasm, individualised or forming agglomerates. These results broaden our understanding of the safe levels of nanoparticle use and its impact on the environment. In addition, the nanoparticles used in this study can be used in new product development, since the observed maximum safe amount.

Evaluation of Toxicity of Nanoparticles

The toxicity of Nanoparticles can be evaluated through many methods. Assays against larvae, plants and cell lines enable the determination of the toxic effects of the sample under study. Inhibition of larval growth by nanoparticles may pave way to the utilization of the nanoparticles as a potent carrier for anticancer drug, according to recent studies. Phytotoxicity of nanoparticles deals with the temporary or permanent damage in plants that include in damage of seed germination, elongation of root length, etc. Studies on the toxicity of cell lines can be done on normal cell lines and/or cancer cell lines. Such toxicological studies would suggest possible applications of the synthesized nanoparticles. The methods described below evaluate the toxicity of Silver nanoparticles against the larvae of Artemia salina and against the seed germination of Raphanus sativus.

Ecotoxicity of Nanoparticles

ISRN Toxicology, 2013

Nanotechnology is a science of producing and utilizing nanosized particles that are measured in nanometers. The unique sizedependent properties make the nanoparticles superior and indispensable as they show unusual physical, chemical, and properties such as conductivity, heat transfer, melting temperature, optical properties, and magnetization. Taking the advantages of these singular properties in order to develop new products is the main purpose of nanotechnology, and that is why it is regarded as "the next industrial revolution. " Although nanotechnology is quite a recent discipline, there have already high number of publications which discuss this topic. However, the safety of nanomaterials is of high priority. Whereas toxicity focuses on human beings and aims at protecting individuals, ecotoxicity looks at various trophic organism levels and intend to protect populations and ecosystems. Ecotoxicity includes natural uptake mechanisms and the influence of environmental factors on bioavailability (and thereby on toxicity). The present paper focuses on the ecotoxic effects and mechanisms of nanomaterials on microorganisms, plants, and other organisms including humans.

Phytotoxicity of nanoparticles—problems with bioassay choosing and sample preparation

Environmental Science and Pollution Research, 2014

For a full estimation of the risk related with the presence of engineered nanoparticles (ENPs) in the environment, the use of the current ecotoxicological methods may prove insufficient. In the study presented herein, various methods of assessment of ecotoxicity were applied to compare the phytotoxicity of three ENPs: nano-ZnO, nano-TiO 2 and nano-Ni. The toxicity was assayed both for aqueous solutions of the ENPs (the germination/elongation test and Phytotestkit F TM ) and for ENPs added to soil (Phytotoxkit F TM and modified Phytotoxkit F TM ). Lepidium sativum was used as a test plant. The scope of the study also included the assessment of the effect of the method of ENP application to the soil (as powder and aqueous suspension) on their phytotoxicity. In the course of the study, no effect of the studied ENPs and their bulk counterparts on the germination of seeds was observed. The root growth inhibition of L. sativum depended on the kind of test applied. The trend between concentration of ENPs and effect depended on the method used and kind of ENPs. For most nanoparticles (despite of the method used), the differences in phytotoxicity between nano and bulk particles were observed. Depending on the kind of ENPs, their phytotoxicity differs between water and soil. ZnO (nano and bulk) and nano-Ni were more toxic in soil than in water. For TiO 2 and bulk-Ni, reverse trend was observed. A different method of ENP application to soil differently affects the phytotoxicity.

Assay-Dependent Phytotoxicity of Nanoparticles to Plants

Environmental Science & Technology, 2009

The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1-1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/ L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0-1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species.

Evaluation of the ecotoxicity of model nanoparticles

Chemosphere, 2009

Since society at large became aware of the use of nanomaterials in ever growing quantities in consumer products and their presence in the environment, critical interest in the impact of this emerging technology has grown. The main concern is whether the unknown risks of engineered nanoparticles (NPs), in particular their impact on health and environment, outweighs their established benefits for society. Therefore, a key issue in this field is to evaluate their potential toxicity. In this context we evaluated the effects on plants and microorganisms of model nanoparticles, in particular of a stable metal (Au, 10 nm mean diameter), a well-known bactericide (Ag, 2 nm mean diameter) and the broadly used Fe 3 O 4 (7 nm mean diameter). The toxicity of these nanoparticles was assayed using standard toxicity tests. Specifically, germination (cucumber and lettuce), bioluminescent (Photobacterium phosphoreum) and anaerobic toxicity tests were performed. Germination tests were conducted at a NP dose of 62, 100 and 116 lg mL À1 for Au, Ag, and Fe 3 O 4 , respectively. The bioluminscent testing (P. phosphoreum) was conducted at a dose of 28, 45 and 52 lg mL À1 for Au, Ag, and Fe 3 O 4 , respectively. Finally, anaerobic tests were conducted at a NP dose of 10, 16 and 18 lg mL À1 for Au, Ag, and Fe 3 O 4 , respectively. In all cases low or zero toxicity was observed. However, some perturbation of the normal functions with respect to controls in germinating tests was observed, suggesting the necessity for further research in this field. At the same time, the effect of NP-solvents was sometimes more significant than that of the NPs themselves, a point that is of special interest for future nanotoxicological studies.

Cytotoxic and Genotoxic effects of Silver Nanoparticles on Allium cepa

Several mutagenic agents may be present in substances released in the environment, which may cause serious environmental impacts. Among these substances, there is a special concern regarding the widespread use of silver nanoparticles (AgNP) in several products due to their widely known bactericidal properties, including in the medical field and the food industry (e.g., active packaging). The assessment of the effects of AgNP released in the environment, having different concentrations, sizes, and being associated or not to other types of materials, including polymers, is therefore essential. In this research, the objective was to evaluate the genotoxic and cytotoxic effects of AgNP (size range between 2 and 8 nm) on root meristematic cells of Allium cepa (A. cepa). Tests were carried out in the presence of colloidal solution of AgNP and AgNP mixed with carboxymethylcellulose (CMC), using distinct concentrations of AgNP. As a result, when compared to control samples, AgNP induced a mitotic index decrease and an increase of chromosomal aberration number for two studied concentrations. When AgNP was in the presence of CMC, no cytotoxic potential was verified, but only the genotoxic potential for AgNP dispersion having concentration of 12.4 ppm.