Role of Protein Kinase C, G-Protein Coupled Receptors, and Calcium Flux During Metamorphosis of the Sea Urchin Strongylocentrotus purpuratus (original) (raw)
Related papers
Calcium control of metamorphosis in polychaete larvae
Journal of Experimental Zoology, 1993
The importance of Ca2' in the control of metamorphosis of a marine invertebrate larva was investigated. An excess of [Ca2+l in the external medium induced metamorphosis of Phragmatopoma californica (polychaete) larvae in a concentration-dependent manner. This effect is specific for calcium, and not simply the result of osmotic changes, as an excess of Mg2+ did not induce metamorphosis. Consistent with this finding, the calcium ionophore, A23187, also induced metamorphosis in a concentration-dependent manner. Paradoxically, however, the aromatic compounds diltiazem, verapamil, D600, and nifedipine, known to block Ca2' channels in other systems, also induced metamorphosis. When exposed to diltiazem for only 20 h and subsequently washed free of this compound, 95% of the larvae metamorphosed and developed normally. Previous studies have demonstrated that the induction of metamorphosis in Phragmatopoma californica is controlled by chemosensory recognition of an exogenous morphogen and mediated by an excitatory pathway that involves adenyl cyclase and cyclic AMP. Because cellular excitation and cyclic AMP-dependent signal transduction generally involve the participation of calcium ion, the most parsimonious explanation for the results reported here include (1) direct control of the morphogenetic pathway by calcium ion, and (2) complexities of the calcium regulation of this process, or a functional similarity between the structurally related aromatic effectors tested and the natural inducer of metamorphosis.
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2001
Cellular adhesion and spreading are critical components involved in the processes of cell and tissue development, and immune responses in molluscs, but at present, little is known regarding the signaling pathways involved in these basic cellular functions. In the present study, the molluscan Biomphalaria glabrata embryonic (Bge) cell line was used as an in vitro model to study the signal transduction pathways regulating molluscan cell adhesion and spreading behavior. Western blot analysis using antibodies specific to mitogen-activated protein kinase (MAPK) revealed the presence of an MAPK-like immunoreactive protein in Bge cells, that was phosphorylated upon exposure to phorbol myristate acetate (PMA). Moreover, Bge cell treatment with inhibitors of protein kinase C (PKC), Ras and MAPK kinase (Mek) suppressed PMAinduced expression of activated MAPK, suggesting that PKC-, Ras-and Mek-like molecules may be acting upstream of MAPK. Similarly, in vitro Bge cell-spreading assays were performed in conjunction with the same panel of inhibitors to determine the potential involvement of PKC, Ras and Mek in cellular adhesion/spreading. Results revealed a similar pattern of inhibition of cell-spreading behavior strongly implying that the Bge cell spreading also may be regulated through a MAPK-associated signal transduction pathway(s) involving proteins similar to PKC, Ras and Mek.
The role of GLWamides in metamorphosis of Hydractinia echinata
Development Genes and Evolution, 1998
The metamorphosis of many marine invertebrate larvae is induced by environmental signals. Upon reception of the cues, internal signals have to be set in motion to convey information to all cells of the larvae. For hydrozoan larvae it was hypothesised that ectodermal neurosensory cells at the anterior part are those cells receptive of the inducer. Recently, it was shown that novel peptides with a common GLWamide terminus are found in Cnidaria. These peptides are located in a specific subset of the anterior sensory cells. It was hypothesised that the neuropeptides represent an internal signal coordinating the metamorphic process. In the current study we present further evidence for this hypothesis. Induction of metamorphosis is very specific for the GLWamide terminus and amidation is essential. The potency to metamorphose is strongly correlated with the presence of GLWamide-immunoreactive cell bodies. Our data fit our hypothesis about a very important role of GLWamides in the initiation of the morphogenetic processes very well.
Development Genes and Evolution, 2007
Many marine invertebrates reproduce through a larval stage. The settlement and metamorphosis of most of the species are synchronised and induced by environmental organisms, mainly bacteria. The hydrozoan Hydractinia echinata has become a model organism for metamorphosis of marine invertebrates. In this species, bacteria, e.g. Pseudoalteromonas espejiana, are the natural inducers of metamorphosis. Like in other species of marine invertebrates, metamorphosis can be induced artificially by monovalent cations, e.g. Cs + . In this study, we present systematic data that metamorphosis-with both inducing compounds, the natural one from bacteria and the artificial one Cs + -are indeed similar with respect to (a) the morphological progression, (b) the localisation of the primary induction signal in the larva, (c) the pattern of apoptotic cells occurring during the initial 10 h of metamorphosis and (d) the disappearance of RFamidedependent immunocytochemical signals in sensory neurons during this process. However, a difference occurs during the development of the anterior end, insofar as apoptotic cells and settlement appear earlier in planulae induced with bacteria. Thus, basically, Cs + may be used as an artificial inducer, mimicking the natural process. However, differences in the appearance of apoptotic cells and in settlement raise the question of how enormous developmental plasticity in hydrozoans actually can be, and how this is related to the absence of malignant devolution in hydrozoans.
Experimental Parasitology, 1998
Lardans, V., Serra, E., Capron, A., and Dissous, C. 1998. Characterpromotion, transformation, and other signal transduction ization of an intracellular receptor for activated protein kinase C pathways. Activation of PKCs results in phosphorylation of (RACK) from the mollusc Biomphalaria glabrata, the intermediate specific proteins and their selective activity is dependent on host for Schistosoma mansoni. Experimental Parasitology 88, 194-199. specific subcellular targeting that allows their accessibility A receptor for activated protein kinase C (RACK) was characterized from the mollusc Biomphalaria glabrata, the intermediate host for to selected substrates (Liu 1996). the human parasite Schistosoma mansoni. This protein was shown to PKC isoenzymes are among the first signaling proteins possess structural and functional characteristics of other RACK proteins that have been shown to undergo translocation from the from various cells and organisms. Its ability to bind mammalian PKCs cytosol to the particulate fraction upon activation. Translocaalso confirmed the conservation of PKC and RACK interactive domains throughout evolution. Results of immunolocalization indicated the pres-tion of PKCs was first thought to reflect a direct binding of ence of Bg RACK in the cytoplasm of mollusc hemocytes and B. the enzyme to membrane lipids but further data indicated glabrata embryonic (Bge) cells with a more intense staining around that proteins could also anchor activated PKCs at the site of the nucleus. These results are in agreement with the association of translocation (Newton 1995). Many of these PKC-targeting RACK proteins with cytoskeletal elements. ᭧ 1998 Academic Press proteins, essentially implied in cytoskeleton functions, con-
The Biological Bulletin, 2000
Most benthic invertebrates have complex life cycles with planktonic larvae that return to the substratum to settle and metamorphose into a benthic stage. Although naturally produced chemical cues have long been thought to be important for the settlement or metamorphosis of invertebrate larvae, few ecologically relevant chemical cues have been clearly identified. The marine echinoid Holopneustes purpurascens has a complex life cycle, with a planktonic, nonfeeding dispersive larva that metamorphoses into a benthic stage that lives in the canopy of subtidal benthic algae such as the red alga Delisea pulchra and the kelp Ecklonia radiata. Recently recruited juveniles are found primarily on D. pulchra, and we hypothesized that this was in response to a chemical cue produced by this alga. Competent larvae metamorphosed in the presence of D. pulchra, or seawater surrounding this alga, but not in response to the presence of E. radiata or its extracts. A cue for metamorphosis was isolated and characterized from D. pulchra and found to be a water-soluble complex of the sugar floridoside and isethionic acid in a 1:1 molar ratio. The floridosideisethionic acid complex also triggered settlement in H. purpurascens; however, this response was less specific than metamorphosis and was reversible. Larvae of H. purpurascens also metamorphosed in the presence of several other species of red, but not brown or green, algae from their habitat. Floridoside is found only in red algae, suggesting that the floridoside-isethionic acid complex may be acting as a cue for metamorphosis in other red algae as well as in D. pulchra.
A sponge allelochemical induces ascidian settlement but inhibits metamorphosis
Marine Biology, 2002
Secondary metabolites synthesised by sessile invertebrates appear to play a role in creating and maintaining space on hard substrata by repelling competitors. In this study, we investigated the responses of the larvae of the ascidian Herdmania curvata to haliclonacyclamine A (HA), the major component of a suite of cytotoxic alkaloids extracted from the sponge Haliclona sp. 628. Both Haliclona sp. 628 and Herdmania curvata inhabit the crest and slope of Heron Island Reef. High rates of settlement were induced in competent H. curvata larvae by a range of concentrations of HA, all lower than that naturally occurring in the sponge. HA did not induce precompetent larvae to settle. Although early metamorphosis of HA-induced larvae was normal, larvae exposed to all but the lowest concentration of HA were developmentally arrested after completion of tail resorption, at about 4 h after the initiation of metamorphosis. These postlarvae underwent extensive cellular necrosis within 24 h. We also demonstrate that the addition of a transcriptional inhibitor, actinomycin D, to larvae also causes inhibition of metamorphosis after tail resorption is completed. Analyses of incorporation of radiolabelled nucleotides to measure levels of transcription during normal development and after the addition of the transcriptional inhibitor indicate that there is a significant burst of transcriptional activity just after tail resorption is completed. Despite inhibiting metamorphosis at the same stage as actinomycin D, HA increases initial rates of RNA synthesis after induction of metamorphosis in a manner similar to that observed in normal postlarvae until the onset of cellular necrosis. We conclude that HA initially induces H. curvata larvae to settle and progress through early metamorphosis possibly by engaging the same pathway as other artificial and environmental cues but subsequently inhibits completion of metamorphosis, resulting in death of the postlarvae. Since HA does not affect overall transcription rates, it appears to disrupt another important developmental process during early metamorphosis.