Recrystallization Kinetics and Microstructure Evolution of Annealed Cold-Drawn Low-Carbon Steel (original) (raw)

Abstract

The recrystallization behavior of cold-drawn 0.12 wt% C steel during annealing at temperatures 600°C and 650°C was investigated. Hardness tests were used to characterize the recrystallization kinetics. The micrographs of the steel were obtained using optical microscopy (OM) to characterize the grain microstructure of the non-treated and the annealed steel samples. Annihilation of dislocation defects occur within the soaking time of 5 - 10 minutes for all the deformed steel after annealing at 650°C. Specifically at 5 minutes soaking time the grains elongation is still observed indicating that reformation of grains is not taking place but recovery of the deformed grains. At the 10 minutes annealing time, new grains are observed to begin and full recrystallization is achieved at 15 minutes annealing time. At annealing time between 20 - 25 minutes, grains coarsening are observed indicating the onset of grain growth. The hardness of the material reduces with increasing annealing temperature for all the degree of cold drawn deformation. On the basis of the experimentally obtained hardness values, recrystallization increases with increasing degree of cold drawn deformation for the annealed steel. Recovery process was found to prolong in the 20% cold drawn steel as compared to the 55% cold drawn steel. The prolong recovery process is due to reduction in the driving force. Full recrystallization of the annealed steel is achieved at different soaking time depending on the degree of the cold drawn steel.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (34)

  1. E. N. Popova, V. V. Popov, E. P. Romanov, N. E. Hle- bova and A. K. Shikov, "Effect of Deformation and An- nealing on Texture Parametal of Composite Cu-Nb Wire," Scupta Materialia, Vol. 51, No. 7, 2004, pp. 727-731. http://dx.doi.org/10.1016/j.scriptamat.2004.05.037
  2. F. Yan, C. Ma, J. Q. Jiang, H. P. Feng and S. T. Zha, "Ef- fect of Cumulative Strain on Texture Characteristics dur- ing Wire Drawing of Eutectoid Steels," Scripta Materi- alia, Vol. 59, No. 8, 2008, pp. 850-853. http://dx.doi.org/10.1016/j.scriptamat.2008.06.048
  3. F. J. Humphreys and M. Hatherly, "Recrystallization and Related Annealing Phenomena," 2nd Edition, Elsevier Ltd., Amsterdam, 2004.
  4. M. Ferry, "Influence of Fine Particle of Grain Coarsening within an Orientation Gradient," Acta Materialia, Vol. 53, No. 3, 2005, pp. 773-783. http://dx.doi.org/10.1016/j.actamat.2004.10.030
  5. J. Schindler, M. Janošec, E. Místecky, M. Rŭžička, L. A. Čížek Dobrzdviski, S. Rusz and P. Svenanek, "Effect of Cold Rolling and Annealing on Mechanical Properties of HSLA Steel," Achives of Materials Science and Engi- neering, Vol. 36, No. 1, 2009, pp. 41-47.
  6. A. Phelippeau, S. Pommier, T. Tsakalakos and M. P. C. Clavel, "Cold Drawn Steel Wires-Processing, Residual Stresses and Ductility-Part I: Metallography and Finite Element Analyses," Fatigue Fracture Engineering Mate- rial Structure, Vol. 29, No. 3, 2006, pp. 243-253. http://dx.doi.org/10.1111/j.1460-2695.2005.00981.x
  7. N. A. Raji and O. O. Oluwole, "Influence of Degree of Cold-Drawing on the Mechanical Properties of Low Car- bon Steel," Materials Sciences and Applications, Vol. 2, No. 11, 2011, pp. 1556-1563. http://dx.doi.org/10.4236/msa.2011.211208
  8. A. L. R. de Castro, H. B. Campos and P. R. Cetlin, "In- fluence of Die Semi-Angle on Mechanical Properties of Single and Multiple Pass Drawn Copper," Journal of Ma- terials Process and Technology, Vol. 60, No. 1-4, 1996, pp. 179-182. http://dx.doi.org/10.1016/0924-0136(96)02325-4
  9. D. G. Cram, H. S. Zurob, Y. J. M. Brechet and C. R. Hutchinsm, "Modeling Discontinuous Dynamic Recrys- tallization Using a Physically Based Model for Nuclea- tion," Acta Materialia, Vol. 57, No. 17, 2009, pp. 5218- 5228. http://dx.doi.org/10.1016/j.actamat.2009.07.024
  10. J. A. Wert, Q. Liu and N. Hansen, "Dislocation Boundary Formation in Cold-Rolled Cube-Orientation Al Single Crystal," Acta Materialia, Vol. 45, No. 6, 1997, pp. 2565- 2576. http://dx.doi.org/10.1016/S1359-6454(96)00348-5
  11. C. Maurice and J. H. Driver, "Hot Rolling Texture of F.C.C. Metals-Part 1. Experimental Results on Al Sam- ple and Polycrystals," Acta Materialia, Vol. 45, No. 11, 1997, pp. 4627-4638. http://dx.doi.org/10.1016/S1359-6454(97)00115-8
  12. A. Godfrey, D. J. Jensen and N. Hansen, "Recrystalliza- tion of Channel Die Deformed Single Crystals of Typical Rolling Orientation," Acta Materialia, Vol. 49, No. 13, 2001, pp. 2429-2440. http://dx.doi.org/10.1016/S1359-6454(01)00148-3
  13. N. Hansen and X. Huang, "Microstructure and Flow Stress of Polycrystals and Single Crystals," Acta Materi- alia, Vol. 46, No. 5, 1998, pp. 1827-1836. http://dx.doi.org/10.1016/S1359-6454(97)00365-0
  14. F. Bossom and J. H. Driver, "Deformation Banding Me- chanisms during Plain Strain Compression of Cube Ori- ented F.C.C. Crystals," Acta Materialia, Vol. 48, No. 9, 2000, pp. 2101-2115. http://dx.doi.org/10.1016/S1359-6454(00)00042-2
  15. S. Zaefferer, J. C. Kuo, Z. Zhao, M. Winning and D. Raabe, "On the Influence of the Grain Boundary Misori- entation on the Plastic Deformation of Aluminum Bi- crystals," Acta Materialia, Vol. 51, No. 16, 2003, pp. 4719- 4735. http://dx.doi.org/10.1016/S1359-6454(03)00259-3
  16. S. Ganapathysubramanian and N. Zabaras, "Deforma- tion Process Design for Control of Microstructure in the Presence of Dynamic Recrystallization and Grain Growth Mechanisms," International Journal of Solids and Struc- tures, Vol. 41, No. 7, 2004, pp. 2011-2037. http://dx.doi.org/10.1016/j.ijsolstr.2003.11.020
  17. G. V. S. S. Prasad, M. Goerdeler and G. Gottstein, "Work Hardening Model Based on Multiple Dislocation Densi- ties," Material Science and Engineering A, Vol. 400-401, 2005, pp. 231-233. http://dx.doi.org/10.1016/j.msea.2005.03.061
  18. M. Dománková, M. Peter and M. Roman, "The Effect of Cold Work on the Sensitization of Austenitic Stainless Steels," Materiali in Technologije, Vol. 41, No. 3, 2007, pp. 131-134.
  19. Z. Huda, "Effect of Cold Working and Recrystallization on the Mecristructure and Hardness of Commercial-Purity Aluminum," European Journal of Scientific Research, Vol. 26, No. 4, 2009, pp. 549-557.
  20. S. J. Pawlak and H. J. Krzton, "Cold Worked High Alloy Ultra-High Strength Steels with Aged Matensite Struc- ture," Journal of Achievement in Materials and Engi- neering, Vol. 36, No. 1, 2009, pp. 18-24.
  21. J. J. Sidor, R. H. Petrov and L. A. I. Kestens, "Micro- structure and Texture Changes in Severely Deformed Alu- minum Alloys," Material Characterization, Vol. 62, No. 2, 2011, pp. 228-236. http://dx.doi.org/10.1016/j.matchar.2010.12.004
  22. T. Fuller and R. M. Brannon, "On the Thermodynamic Requirement of Elastic Stiffness Anisotropy in Isotropic Materials," International Journal of Engineering Science, Vol. 49, No. 4, 2011, pp. 311-321 http://dx.doi.org/10.1016/j.ijengsci.2010.12.017
  23. N. A. Raji and O. O. Oluwole, "Effect of Cold Drawn De- formation on Mechanical Properties of Low-Carbon Steel Due to Changes in Grain Sizes," Nigerian Society of En- gineers Technical Transactions, Vol. 46, No. 3, 2011, pp. 69-78.
  24. M. Janošec, I. Schindler, V. Vodárek, J. Palát, S. Rusz, P. Suchánek, M. Růžička, E. Místecký and N. Huť, "Micro- structure and Mechanical Properties of Cold Rolled, An- nealed HSLA Strip Steels," Archives of Civil and Me- chanical Engineering, Vol. 7, No. 2, 2007, pp. 29-38.
  25. P. R. Rios, F. Siciliano, R. Z. Sandim, R. L. Plant and A. F. Padilha, "Nucleation and Growth during Recrystalliza- tion," Material Research, Vol. 8, No. 3, 2005, pp. 225- 238. http://dx.doi.org/10.1590/S1516-14392005000300002
  26. R. A. Vandermeer and D. T. Juul Jensen, "Microstruc- tural Path and Temperature Dependence of Recrystalliza- tion in Commercial Aluminum," Acta Materialia, Vol. 49, No. 11, 2001, pp. 2083-2094. http://dx.doi.org/10.1016/S1359-6454(01)00074-X
  27. R. D. Doherty, "Recrystallization and Texture," Progress in Material Science, Vol. 42, No. 1-4, 1997, pp. 39-58. http://dx.doi.org/10.1016/S0079-6425(97)00007-8
  28. H. Hallberg, "Approaches to Modeling of Recrystalliza- tion," Metals, Vol. 1, No. 1, 2011, pp. 16-48. http://dx.doi.org/10.3390/met1010016
  29. S. P. Chen, D. N. Hanlon and S. Van der Zwaag, "Quan- tification of the Recrystallization Behavior in Al-Allo AA 1050," Journal of Material Sciences, Vol. 37, No. 5, 2002, pp. 989-995. http://dx.doi.org/10.1023/A:1014356116058
  30. P. N. Kalu and D. R. Waryoba, "A JMAK-Microhardness Model for Quantifying the Kinetics of Restoration Mecha- nisms in Inhomogeneous Microstructure," Materials Sci- ence and Engineering A, Vol. 464, No. 1-2, 2007, pp. 68- 75. http://dx.doi.org/10.1016/j.msea.2007.01.124
  31. D. P. Field, L. T. Bradford, M. M. Nowell and T. M. Lillo, "The Role of Annealing Twins during Recrystallization of Cu," Acta Materialia, Vol. 55, No. 12, 2007, pp. 4233- 4241. http://dx.doi.org/10.1016/j.actamat.2007.03.021
  32. R. L. Goetz and V. Seethenaman, "Modeling Dynamic Re- crystallization Using Cellular Automata," Scripta Materi- alia, Vol. 38, No. 3, 1998, pp. 405-413. http://dx.doi.org/10.1016/S1359-6462(97)00500-9
  33. Y. Lü, D. A. Molodov and G. Gottstein, "Recrystalliza- tion Kinetics and Microstructure Evolution during An- nealing of a Cold-Rolled Fe-Mn-C alloy," Acta Materi- alia, Vol. 59, No. 8, pp. 3229-3243. http://dx.doi.org/10.1016/j.actamat.2011.01.063
  34. B. Radhakrishnan, G. B. Sarma and T. Zacharia, "Mod- eling the Kinetics and Microstructure Evolution during Static Recrystallization-Monte Carlo Simulation of Re- crystallization," Acta Materialia, Vol. 46, No. 12, 1998, pp. 4415-4433. http://dx.doi.org/10.1016/S1359-6454(98)00077-9