Computing Toric Ideals (original) (raw)

Abstract

Toric ideals are binomial ideals which represent the algebraic relations of sets of power products. They appear in many problems arising from different branches of mathematics. In this paper, we develop new theories which allow us to devise a parallel algorithm and an efficient elimination algorithm. In many respects they improve existing algorithms for the computation of toric ideals.

Figures (1)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. --Adams, W., Loustaunau, P. (1994). An Introduction to Gröbner Bases, GSM 3. Providence, RI, American Mathematical Society.
  2. --Bigatti, A. M. (1997). Computation of Hilbert-Poincaré series. J. Pure Appl. Algebra, 119, 237-253.
  3. --Buchberger, B. (1985). An algorithmic method in polynomial ideal theory. Chapter 6. In Bose, N. K., ed., Progress, Directions, and Open Problems in Multidimensional Systems Theory, pp. 184-232. Dodrecht, Reidel Publishing Company.
  4. --Caboara, M., De Dominicis, G., Robbiano, L. (1996). Multigraded Hilbert functions and Buchberger algorithm. In Lakshman, Y. N., ed., Proceedings of ISSAC '96 , pp. 72-78. New York, ACM.
  5. --Capani, A., De Dominicis, G., Niesi, G., Robbiano, L. (1997). Computing minimal finite free resolutions. J. Pure Appl. Algebra, 117&118, 105-117.
  6. --Capani, A., Niesi, G., Robbiano, L. (1995). CoCoA, a system for doing computations in commutative algebra. Available via anonymous ftp from cocoa.dima.unige.it.
  7. --Capani, A., Niesi, G., Robbiano, L. (1997). Some Features of CoCoA 3. Moldova J. Comput. Sci., 4/3, 296-314.
  8. --Conti, P., Traverso, C. (1991). Buchberger algorithm and integer programming. In Springer, ed., Pro- ceedings AAECC-9, LNCS 539, pp. 130-139. New York, Springer.
  9. --Cox, D., Little, J., O'Shea, D. (1992). Ideals, Varieties, and Algorithms. New York, Springer.
  10. --Di Biase, F., Urbanke, R. (1995). An algorithm to calculate the kernel of certain polynomial ring homo- morphisms. Exp. Math., 4, 227-234.
  11. --Eisenbud, D., Sturmfels, B. (1996). Binomial ideals. Duke Math. J., 84, 1-45.
  12. --Hosten, S., Shapiro, J. (1997). Primary decompositions of lattice basis ideals. To appear.
  13. --Hosten, S., Sturmfels, B. (1995). GRIN: An implementation of Gröbner bases for integer programming. In Balas, E. J. C., ed., Integer Programming and Combinatorial Optimization, LNCS 920, pp. 267-276. New York, Springer.
  14. --Hosten, S., Thomas, R. (1998). Gröbner bases and integer programming. In Gröbner Bases and Appli- cations, LMSLNS 251, pp. 144-158. Cambridge, Cambridge University Press.
  15. --Li, Q., Guo, Y., Ida, T., Darligton, J. (1997). The minimised geometric buchberger algorithm: an optimal algebraic algorithm for integer programming. In Proceedings of ISSAC-97, pp. 331-338. New York, ACM. --Pottier, L. (1994). Gröbner bases of toric ideals. Research report 2224, INRIA, Sophia Antipolis.
  16. --Robbiano, L., Sweedler, M. (1988). Bases of subalgebras. In Commutative Algebra Proceedings, LNM 1430, Salvador, Brasil. New York, Springer.
  17. --Sturmfels, B. (1996). Gröbner bases and convex polytopes, ULS 8, Providence, RI, American Mathemat- ical Society.
  18. --Thomas, R. (1997). A geometric Buchberger algorithm for integer programming. Math. Oper. Res., 77, 357-387.
  19. --Thomas, R., Weismantel, R. (1997). Truncated Gröbner bases for integer programming. Appl. Algebra Eng., Commun. Comput., 8, 241-257.
  20. --Traverso, C. (1996). Hilbert Functions and the Buchberger Algorithm. J. Symb. Comput., 22, 355-376. Originally Received 17 February 1998 Accepted 15 December 1998