Chronic parkinsonism secondary to intravenous injection of meperidine analogues (original) (raw)
Related papers
Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease
Neurochemical research, 2003
To study changes in amino acid metabolism and biogenic amines in Parkinson's disease, we set up a prospective study and measured biogenic amines, their main metabolites, and 22 different amino acids, in cerebrospinal fluid of Parkinson's disease patients (n = 24) and age-matched controls (n = 30). A trend toward higher dopamine levels in Parkinson's disease patients was interpreted as an effect of treatment with levodopa and/or selegiline. Significantly lower concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid in the Parkinson's disease group might reflect dopaminergic cell loss. Our results revealed decreased serotonin catabolism that was interpreted as an effect of treatment with selegiline. Whereas all amino acid levels were unchanged, taurine was significantly lower in Parkinson's disease patients. Studies showed that taurine exerts a trophic action on the central nervous system. In this view, decreased taurine in a neurodegenerative diso...
Neurotoxicology, 2018
Heterocyclic amines (HCAs) are primarily produced during high temperature meat cooking. These compounds have been intensively investigated as mutagens and carcinogens. However, converging data suggest that HCAs may also be neurotoxic and potentially relevant to neurodegenerative diseases such as Parkinson's disease (PD). The identification of new potential etiological factors is important because most PD cases are sporadic. Our group previously showed that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was selectively neurotoxic to dopaminergic neurons. However, PhIP is one of many HCAs, a class of compounds that exhibits wide structural variability. The goal of this study was to determine the neurotoxicity of the most prevalent and best studied HCAs from three subclasses: aminoimidazoaazarenes (AIA), α-carbolines, and β-carbolines. Using E17 rat primary midbrain cultures, we tested dopaminergic and non-dopaminergic neurotoxicity elicited by the following compounds: 2-am...
n-Hexane-induced parkinsonism: Pathogenetic hypotheses
Movement Disorders, 1995
n-Hexane, similar hydrocarbons, and derivatives are common environmental pollutants and by-products of lipid peroxidation, and they may have a nigrotoxic effect like that of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. This report describes our second case of parkinsonism in a subject exposed to n-hexane. Positron emission tomography studies demonstrated regional striatal abnormalities of the nigrostriatal dopaminergic system and of glucose metabolism that were different from those found in idiopathic Parkinson's disease.
The Journal of biological chemistry, 2000
Uptake of the Parkinsonism-inducing toxin, 1-methyl-4-phenylpyridinium (MPP(+)), into dopaminergic terminals is thought to block Complex I activity leading to ATP loss and overproduction of reactive oxygen species (ROS). The present study indicates that MPP(+)-induced ROS formation is not mitochondrial in origin but results from intracellular dopamine (DA) oxidation. Although a mean lethal dose of MPP(+) led to ROS production in identified dopaminergic neurons, toxic doses of the Complex I inhibitor rotenone did not. Concurrent with ROS formation, MPP(+) redistributed vesicular DA to the cytoplasm prior to its extrusion from the cell by reverse transport via the DA transporter. MPP(+)-induced DA redistribution was also associated with cell death. Depleting cells of newly synthesized and/or stored DA significantly attenuated both superoxide production and cell death, whereas enhancing intracellular DA content exacerbated dopaminergic sensitivity to MPP(+). Lastly, depleting cells of ...