Synthesis and biochemical evaluation of guanidino-alkyl-ribitol derivatives as nucleoside hydrolase inhibitors (original) (raw)

N-Arylmethyl substituted iminoribitol derivatives as inhibitors of a purine specific nucleoside hydrolase

Bioorganic & Medicinal Chemistry, 2008

A key enzyme within the purine salvage pathway of parasites, nucleoside hydrolase, is proposed as a good target for new antiparasitic drugs. We have developed N-arylmethyl-iminoribitol derivatives as a novel class of inhibitors against a purine specific nucleoside hydrolase from Trypanosoma vivax. Several of our inhibitors exhibited low nanomolar activity, with 1,4-dideoxy-1,4-imino-N-(8-quinolinyl)methyl-D-ribitol (UAMC-00115, K i 10.8 nM), N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4imino-D-ribitol (K i 4.1 nM), and N-(9-deazahypoxanthin-9-yl)methyl-1,4-dideoxy-1,4-imino-D-ribitol (K i 4.4 nM) being the three most active compounds. Docking studies of the most active inhibitors revealed several important interactions with the enzyme. Among these interactions are aromatic stacking of the nucleobase mimic with two Trp-residues, and hydrogen bonds between the hydroxyl groups of the inhibitors and amino acid residues in the active site. During the course of these docking studies we also identified a strong interaction between the Asp40 residue from the enzyme and the inhibitor. This is an interaction which has not previously been considered as being important.

Evaluation of Nucleoside Hydrolase Inhibitors for Treatment of African Trypanosomiasis

Antimicrobial Agents and Chemotherapy, 2010

In this paper, we present the biochemical and biological evaluation of N-arylmethyl-substituted iminoribitol derivatives as potential chemotherapeutic agents against trypanosomiasis. Previously, a library of 52 compounds was designed and synthesized as potent and selective inhibitors of Trypanosoma vivax inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH). However, when the compounds were tested against bloodstream-form Trypanosoma brucei brucei, only one inhibitor, N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-

Crystal structures of T. vivax nucleoside hydrolase in complex with new potent and specific inhibitors

Biochimica et Biophysica Acta

Diseases caused by parasitic protozoa remain a major health problem, mainly due to old toxic drugs and rising drug resistance. Nucleoside hydrolases are key enzymes of the purine salvage pathway of parasites from the Trypanosomatidae family and are considered as possible drug targets. N-Arylmethyl substituted iminoribitols have been developed as selective nanomolar affinity inhibitors against the purine-specific nucleoside hydrolase of Trypanosoma vivax. The current paper describes the crystal structures of the T. vivax nucleoside hydrolase in complex with two of these inhibitors, to 1.3 and 1.85 A resolution. These high resolution structures provide an accurate picture of the mode of binding of these inhibitors and their mechanism of transition-state mimicry, and are valuable tools to guide further inhibitor design. Comparison of the current structures with previously solved structures of the enzyme in complex with ground-state and transition-state-analogue inhibitors also allows f...

Structure\u2013activity relationship exploration of 3\u2032-Deoxy-7-deazapurine nucleoside analogues as anti-Trypanosoma brucei agents

2020

Human African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei parasites. These protists are unable to produce the purine ring, making them vulnerable to the effects of purine nucleoside analogues. Starting from 3'-deoxytubercidin 5, a lead compound with activity against central nervous stage human African trypanosomiasis, we investigate the structure-activity relationship of the purine and ribofuranose ring. The purine ring tolerated only modifications at C7, while from the many alterations of the 3'-deoxyribofuranosyl moiety only the arabino analogue 48 showed pronounced antitrypanosomal activity. Profiling of the most potent analogues against resistant T. brucei strains (resistant to pentamidine, diminazene and isometamidium) showed reduced dependence on uptake mediated by the P2 aminopurine transporter compared to 5. The introduction of a 7-substituent confers increased affinity for the P1 nucleoside transporter up to 10-fold, while generally retaining high affinity for P2. Four of the most promising analogues were found to be metabolically stable, earmarking them suitable backup analogues for lead 5.

Title: Structure-guided tuning of a selectivity switch towards ribonucleosides in Trypanosoma brucei purine nucleoside 2' deoxyribosyltransferase

CHEMBIOCHEM, 2019

The use of nucleoside 2’-deoxyribosyltransferases (NDTs) as biocatalysts for the industrial synthesis of nucleoside analogues is often hindered by their strict preference for 2’- deoxyribonucleosides. We now show that a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei (TbPDT) can also accept ribonucleosides as substrates, most likely because of the distinct role played by Asn53 at a position that is usually occupied by Asp in other NDTs. Moreover, this unusual activity was improved ~3-fold by introducing a single amino acid replacement at position 5 following a structure-guided approach. Biophysical and biochemical characterization revealed that the TbPDTY5F variant is a homodimer that displays maximum activity at 50 oC and pH 6.5 and shows a remarkably high melting temperature of 69 oC. Substrate specificity studies demonstrated that 6-oxopurine ribonucleosides are the best donors (inosine > guanosine >> adenosine) whereas no significant preferences exist between 6-aminopurines and 6-oxopurines as base acceptors. In contrast, no transferase activity could be detected on xanthine and 7-deaza purines. TbPDTY5F was successfully employed in the synthesis of a wide range of modified ribonucleosides containing different purine analogues.

Molecular design, synthesis and biological evaluation of 1,4-dihydro-4-oxoquinoline ribonucleosides as TcGAPDH inhibitors with trypanocidal activity

Bioorganic & medicinal chemistry letters, 2013

The 1,4-dihydro-4-oxoquinoline ribonucleoside, Neq135, is the first low micromolar trypanosomatidae inhibitor to show good ligand efficiency (0.28 kcal mol(-1)atom(-1)) and good ligand lipophilicity efficiency (0.37 kcal mol(-1)atom(-1)) when acting against Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase (TcGAPDH). This and other six ribonucleosides were synthesized using our in-house technology, and assayed against the GAPDH NAD(+) site using isothermal titration calorimetry (ITC). Compound Neq135 had acceptable in vitro cytotoxicity, inhibited TcGAPDH with a Ki(app) value of 16 μM and killed the trypomastigote form of Trypanosoma cruzi Tulahuen strain with a concentration similar to that displayed by the control drug benznidazole. Neq135 is tenfold lower kinetic affinity against hGAPDH and does not kill Balb-c fibroblast nor spleen mouse cells. These results emphasize the possibility of integrating ligand- and target-based designs to uncover potent and selective TcGAPDH...

Title: Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2'-deoxyribosyltransferase from Trypanosoma brucei Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2'-deoxyribosyl-transferase from Trypanosoma brucei

The use of enzymes for the synthesis of nucleoside analogues offers several advantages over multistep chemical methods, including chemo-, regio-and stereoselectivity as well as milder reaction conditions. Herein, the production, characterization and utilization of a purine nucleoside 2'-deoxyribosyl-transferase (PDT) from Trypanosoma brucei are reported. TbPDT is a dimer which displays not only excellent activity and stability over a broad range of temperatures (50−70 ºC), pH (4−7) and ionic strength (0−500 mM NaCl) but also an unusual high stability under alkaline conditions (pH 8−10). TbPDT is shown to be proficient in the biosynthesis of numerous therapeutic nucleosides, including didanosine, vidarabine, cladribine, fludarabine and nelarabine. The structure-guided replacement of Val11 with either Ala or Ser resulted in variants with 2.8-fold greater activity. TbPDT was also covalently immobilized on glutaraldehyde-activated magnetic microspheres. MTbPDT3 was selected as the best derivative (4200 IU/g, activity recovery of 22%), and could be easily recaptured and recycled for >25 reactions with negligible loss of activity. Finally, MTbPDT3 was successfully employed in the expedient synthesis of several nucleo-side analogues. Taken together, our results support the notion that TbPDT has good potential as an industrial biocatalyst for the synthesis of a wide range of therapeutic nucleosides through an efficient and environmentally friendly methodology.

Iminoribitol Transition State Analogue Inhibitors of Protozoan Nucleoside Hydrolases †

Biochemistry, 1999

Nucleoside N-ribohydrolases from protozoan parasites are targets for inhibitor design in these purine-auxotrophic organisms. Purine-specific and purine/pyrimidine-nonspecific nucleoside hydrolases have been reported. Iminoribitols that are 1-substituted with meta-and para-derivatized phenyl groups [(1S)-substituted 1,4-dideoxy-1,4-imino-D-ribitols] are powerful inhibitors for the nonspecific nucleoside N-ribohydrolases, but are weak inhibitiors for purine-specific isozymes [Parkin, D. W., Limberg, G., Tyler, P. C., Furneaux, R. H., Chen, X.-Y., and Schramm, V. L. (1997) Biochemisty 36, 3528-3534]. Binding of these inhibitors to nonspecific nucleoside hydrolase occurs primarily via interaction with the iminoribitol, a ribooxocarbenium ion analogue of the transition state. Weaker interactions arise from hydrophobic interactions between the phenyl group and the purine/pyrimidine site. In contrast, the purine-specific enzymes obtain equal catalytic potential from leaving group activation and ribooxocarbenium ion formation. Knowledge of the reaction mechanisms and transition states for these enzymes has guided the design of isozyme-specific transition state analogue inhibitors. New synthetic efforts have produced novel inhibitors that incorporate features of the leaving group hydrogen-bonding sites while retaining the iminoribitol group. These compounds provide the first transition state analogue inhibitors for purine-specific nucleoside hydrolase. The most inhibitory 1-substituted iminoribitol heterocycle is a sub-nanomolar inhibitor for the purine-specific nucleoside hydrolase from Trypanosoma brucei brucei. Novel nanomolar inhibitors are also described for the nonspecific nucleoside hydrolase from Crithidia fasciculata. The compounds reported here are the most powerful iminoribitol inhibitors yet described for the nucleoside hydrolases. †