Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima (original) (raw)

The thermal stress response of the hyperthermophilic bacterium Thermotoga maritima was characterized using a 407-open reading frame-targeted cDNA microarray. Transient gene expression was followed for 90 min, following a shift from 80°C to 90°C. While some aspects of mesophilic heat-shock response were conserved in T. maritima, genome content suggested differentiating features that were borne out by transcriptional analysis. Early induction of predicted heat-shock operons hrcA-grpE-dnaJ (TM0851-TM0850-TM0849), groES-groEL (TM0505-TM0506), and dnaK-sHSP (TM0373-TM0374) was consistent with conserved CIRCE elements upstream of hrcA and groES. Induction of the T. maritima rpoE/sigW and rpoD/sigA homologs suggests a mechanism for global heat-shock response in the absence of an identifiable ortholog to a major heat-shock sigma factor. In contrast to heatshock response in Escherichia coli, the majority of genes encoding ATP-dependent proteases were downregulated, including clpP (TM0695), clpQ (TM0521), clpY (TM0522), lonA (TM1633), and lonB (TM1869). Notably, T. maritima showed indications of a late heat-shock response with the induction of a marR homolog (TM0816), several other putative transcriptional regulators (TM1023, TM1069), and two a-glucosidases (TM0434 and TM1068). Taken together, the results reported here indicate that, while T. maritima shares core elements of the bacterial heat-shock response with mesophiles, the thermal stress regulatory strategies of this organism differ significantly. However, it remains to be elucidated whether these differences are related to thermophilicity or phylogenetic placement.