Savanna domain in the herbivores-fire parameter space exploiting a tree–grass–soil water dynamic model (original) (raw)
Related papers
EFFECTS OF FIRE AND HERBIVORY ON THE STABILITY OF SAVANNA ECOSYSTEMS
Ecology, 2003
Savanna ecosystems are characterized by the co-occurrence of trees and grasses. In this paper, we argue that the balance between trees and grasses is, to a large extent, determined by the indirect interactive effects of herbivory and fire. These effects are based on the positive feedback between fuel load (grass biomass) and fire intensity. An increase in the level of grazing leads to reduced fuel load, which makes fire less intense and, thus, less damaging to trees and, consequently, results in an increase in woody vegetation. The system then switches from a state with trees and grasses to a state with solely trees. Similarly, browsers may enhance the effect of fire on trees because they reduce woody biomass, thus indirectly stimulating grass growth. This consequent increase in fuel load results in more intense fire and increased decline of biomass. The system then switches from a state with solely trees to a state with trees and grasses. We maintain that the interaction between fire and herbivory provides a mechanistic explanation for observed discontinuous changes in woody and grass biomass. This is an alternative for the soil degradation mechanism, in which there is a positive feedback between the amount of grass biomass and the amount of water that infiltrates into the soil. The soil degradation mechanism predicts no discontinuous changes, such as bush encroachment, on sandy soils. Such changes, however, are frequently observed. Therefore, the interactive effects of fire and herbivory provide a more plausible explanation for the occurrence of discontinuous changes in savanna ecosystems.
Tree–grass co-existence in savanna: Interactions of rain and fire
2010
The mechanisms permitting the co-existence of tree and grass in savannas have been a source of contention for many years. The two main classes of explanations involve either competition for resources, or differential sensitivity to disturbances. Published models focus principally on one or the other of these mechanisms. Here we introduce a simple ecohydrologic model of savanna vegetation involving both competition for water, and differential sensitivity of trees and grasses to fire disturbances. We show how the co-existence of trees and grasses in savannas can be simultaneously controlled by rainfall and fire, and how the relative importance of the two factors distinguishes between dry and moist savannas. The stability map allows to predict the changes in vegetation structure along gradients of rainfall and fire disturbances realistically, and to clarify the distinction between climate- and disturbance-dependent ecosystems.
Ecology, 2010
Savannas are characterized by a competitive tension between grasses and trees, and theoretical models illustrate how this competitive tension is influenced by resource availability, competition for these resources, and disturbances. How this universe of theoretical possibilities translates into the real world is, however, poorly understood. In this paper we indirectly parameterize a theoretical model of savanna dynamics with the aim of gaining insights as to how the grass-tree balance changes across a broad biogeographical gradient. We use data on the abundance of trees in African savannas and Markov chain Monte Carlo methods to estimate the model parameters. The analysis shows that grasses and trees can coexist over a broad range of rainfall regimes. Further, our results indicate that savannas may be regulated by either asymptotically stable dynamics (in the absence of fire) or by stable limit cycles (in the presence of fire). Rainfall does not influence which of these two classes of dynamics occurs. We conclude that, even though fire might not be necessary for grass-tree coexistence, it nonetheless is an important modifier of grass : tree ratios.
Vegetation, Fire, and Feedbacks: A Disturbance-Mediated Model of Savannas
abstract: Savanna models that are based on recurrent disturbances such as fire result in non-equilibrium savannas, but these models rarely incorporate vegetation feedbacks on fire frequency or include more than two states (grasses and trees). We develop a disturbance model that includes vegetation-fire feedbacks, using a system of differential equations to represent three main components of savannas: grasses, fire-tolerant savanna trees, and fire-intolerant forest trees. We investigate the stability of savannas in the presence of positive feedbacks of fire frequency with (1) grasses, (2) savanna trees, and (3) grasses and savanna trees together while also allowing for negative feedbacks of forest trees on fire frequency. We find that positive feedbacks between fire frequency and savanna trees, alone or together with grasses, can stabilize savannas, blocking the conversion of savannas to forests. Negative feedbacks of forest trees on fire frequency shift the range of parameter space that supports savannas, but they do not generally alter our results. We propose that pyrogenic trees that modify characteristics of fire regimes are ecosystem engineers that facilitate the persistence of savannas, generating both threshold fire frequencies with rapid changes in community composition when these thresholds are crossed and hystereses with bistable community states.
Perspectives in Plant Ecology, Evolution and Systematics, 2006
The coexistence of woody and grassy plants in savannas has often been attributed to a rooting-niche separation (two-layer hypothesis). Water was assumed to be the limiting resource for both growth forms and grasses were assumed to extract water from the upper soil layer and trees and bushes from the lower layers. Woody plant encroachment (i.e. an increase in density of woody plants often unpalatable to domestic livestock) is a serious problem in many savannas and is believed to be the result of overgrazing in 'two-layer systems'. Recent research has questioned the universality of both the two-layer hypothesis and the hypothesis that overgrazing is the cause of woody plant encroachment.
The effect of fire on tree?grass coexistence in savannas: a simulation study
International Journal of Wildland Fire, 2015
The savanna biome has the greatest burned area globally. Whereas the global distribution of most biomes can be predicted successfully from climatic variables, this is not so for savannas. Attempts to dynamically model the distribution of savannas, including a realistically varying tree : grass ratio are fraught with difficulties. In a simulation study using the dynamic vegetation model LPJ-GUESS we investigate the effect of fire on the tree : grass ratios as well as the biome distribution on the African continent. We performed simulations at three spatial scales: locally, at four sites inside Kruger National Park (South Africa); regionally, along a precipitation gradient; and for the African continent. We evaluated the model using results of a fire experiment and found that the model underestimates the effect of fire on tree cover slightly. On a regional scale, high frequencies were able to prevent trees from outcompeting grasses in mesic regions between ~700 and 900 mm mean annual ...
Water Limitation, Fire, and Savanna Persistence A Conceptual Model
Water Limitation, Fire, and Savanna Persistence, 2019
Savannas are terrestrial biomes typically characterized by the coexistence of grasses and woody plants (Chapter 1). Two broad physiognomies can be distinguished in savannas on the basis of the presence or absence of a woody overstory. The savanna physiognomy (hereafter savanna) is broadly characterized by a continuous herbaceous ground layer, which we collectively refer to as "grass, " and an incomplete overstory of woody plants (
BIOMATH
The savanna biome encompasses a variety of vegetation physiognomies that traduce complex dynamical responses of plants to the rainfall gradients leading from tropical forests to hot deserts. Such responses are shaped by interactions between woody and grassy plants that can be either direct, disturbance-mediated or both. There has been increasing evidence that several vegetation physiognomies, sometimes highly contrasted, may durably coexist under similar rainfall conditions suggesting multi-stability or at least not abrupt transitions. These fascinating questions have triggered burgeoning modelling efforts which have, however, not yet delivered an integrated picture liable to furnish sensible predictions of potential vegetation at broad scales. In this paper, we will recall the key ecological processes and resulting vegetation dynamics that models should take into account. We will also present the main modelling options present in the literature and advocate the use of minimalistic ...
A Generic Modelling of Fire Impact in a Tree-Grass Savanna Model
BIOMATH, 2014
We propose and study a model for treegrass interactions in the context of savannas which are subjected to fire pressure. Several theoretical models in the literature which have highlighted the impact of fire on tree-grass interactions did not explicitly deal with the indirect feedback of dry grass biomass onto tree dynamics through fire intensity and frequency. The novelty in our work is to consider a fairly generic modeling of fire impact on woody biomass by means of a family of increasing and bounded functions of grass biomass. The characteristic feature of this family of functions is that, it could include several forms: linear as well as non-linear ones (sigmoidal or not). Since the nonlinear shape brings more diverse results than the previous attempts using a linear function, it could be used to show that several vegetation equilibria exist with some of them showing tree-grass coexistence features. We show that the number of equilibria with both grass and trees depends on the choice of the fire impact function. We also established thresholds defining the stability domains of the equilibria and highlighted some bifurcation parameters to provide numerical simulations complying with the theoretical properties of the model.
Savannas are one of the most extensive biomes of the world and are subject to intense pressures due to large human populations using this ecosystem, even though it is characterized by low crop yields and poor nutritional quality of natural pastures. Conversion to agriculture and fragmentation of Neotropical savannas, and increasing population pressures are promoting the extent and use of anthropogenic fire. In this paper we develop a mathematical model to account for spatial dynamics of the savanna grass community. This model is based on a matrix model of growth of three dominant grasses of the Neotropical savanna (Elyonurus adustus, Leptocoryphium lanatum and Andropogon semiberbis). The model integrates plant architecture and competition to simulate the dynamics of this system. Our model focuses on fire as an essential event in the dynamics of the savanna community, especially frequency of occurrence. We study the current frequency of one fire a year and how changes in fire frequen...