Silver nanospheres are cytotoxic and genotoxic to fish cells (original) (raw)
Abstract
Nanoparticles are being widely investigated for a range of applications due to their unique physical properties. For example, silver nanoparticles are used in commercial products for their antibacterial and antifungal properties. Some of these products are likely to result in silver nanoparticles reaching the aquatic environment. As such, nanoparticles pose a health concern for humans and aquatic species. We used a medaka (Oryzias latipes) cell line to investigate the cytotoxicity and genotoxicity of 30 nm diameter silver nanospheres. Treatments of 0.05, 0.3, 0.5, 3 and 5 g/cm 2 induced 80, 45.7, 24.3, 1 and 0.1% survival, respectively, in a colony forming assay. Silver nanoparticles also induced chromosomal aberrations and aneuploidy. Treatments of 0, 0.05, 0.1 and 0.3 g/cm 2 induced damage in 8, 10.8, 16 and 15.8% of metaphases and 10.8, 15.6, 24 and 24 total aberrations in 100 metaphases, respectively. These data show that silver nanoparticles are cytotoxic and genotoxic to fish cells.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (49)
- Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S.M., Schlager, J.J., Hong, Y., 2008. DNA damage response to different surface chemistry of silver nanoparti- cles in mammalian cells. Toxicol. Appl. Pharm. 233, 404-410.
- Arora, S., Jain, J., Rajwade, J.M., Paknikar, K.M., 2008. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett. 179, 93-100.
- Asharani, P.V., Wu, Y.L., Gong, Z., Valiyaveettil1, S., 2008. Toxicity of silver nanopar- ticles in zebrafish models. Nanotechnology 19, 1-8.
- Asharani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S., 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279-290.
- Berne, B., Pecora, R., 1975. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Courier Dover Publications.
- Bishop, P.T., 2002. The use of gold mercaptides for decorative precious metal appli- cations. Gold Bull. 35, 89-98.
- Bourrinet, P., Bengele, H.H., Bonnemain, B., Dencausse, A., Idee, J.-M., Jacobs, P.M., Lewis, J.M., 2006. Preclinical safety and pharmacokinetic profile of ferumoxtran- 10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 41, 313-324.
- Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M.C., 2005. In vitro cyto- toxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412-419.
- Cochran, W.G., Cox, G.M., 1950. Experimental Designs. John Wiley & Sons, Inc., New York.
- Enusten, B.V., Turkevich, J., 1963. Coagulation of colloidal gold. J. Am. Chem. Soc. 85 (21), 3317-3328.
- Evans, D.F., Wennerström, H., 1999. The Colloidal Domain: Where Physics, Chem- istry, Biology, and Technology Meet, 2nd ed. Wiley, New York, Chapter 8, pp. 401-538.
- Fuller, S.B., Wilhelm, E.J., Jacobson, J.M., 2002. Ink-jet printed nanoparticle micro- electromechanical systems. J. Microelectromech. Syst. 11, 54-60.
- Goodale, B.C., Walter, R., Pelsue, S.R., Thompson, W.D., Wise, S.S., Winn, R.N., Mitani, H., Wise Sr., J.P., 2008. The cytotoxicity and genotoxicity of hexavalent chromium in medaka (Oryzias latipes) cells. Aquat. Toxicol. 87, 60-67.
- Goodman, C.M., McCusker, C.D., Yilmaz, T., Rotello, V.M., 2004. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15, 897-900.
- Gopinath, P., Gogoi, S.K., Chattopadhyay, A., Ghosh, S.S., 2008. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 19, 1-10.
- Griffitt, R.J., Hyndman, K., Denslow, N.D., Barber, D.S., 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 107, 404-415.
- Griffitt, R.J., Luo, J., Gao, J., Bonzongo, J.-C., Barber, D.S., 2008. Effects of particle com- position and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27, 1972-1978.
- Haruta, M., 2005. Gold rush. Nature 437, 1098-1099.
- Hawkins, W.E., Walker, W.W., Fournie, J.W., Manning, C.S., Krol, R.M., 2003. Use of the Japanese medaka (Oryzias latipes) and guppy (Poecilia reticulate) in carcino- genesis testing under national toxicology program protocols. Toxicol. Pathol. 31, 88-91.
- Hood, E., 2004. Nanotechnology, diving into the unknown. Environ. Health Perspect. 112, A747-A749.
- Hughes, M.D., Xu, Y.J., Jenkins, P., McMorn, P., Landon, P., Enache, D.I., Carley, A.F., Attard, G.A., Hutchings, G.J., King, F., Stitt, E.H., Johnston, P., Griffin, K., Keily, C.J., 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132-1135.
- Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., Schlager, J.J., 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975-983.
- Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T., Nagayasu, Y., Doi, K., Kasai, Y., Jindo, T., Kobayashi, D., Shimada, A., Toyoda, A., Kuroki, Y., Fujiyama, A., Sasaki, T., Shimizu, A., Asakawa, S., Shimizu, N., Hashimoto, S., Yang, J., Lee, Y., Matsushima, K., Sugano, S., Sakaizumi, M., Narita, T., Ohishi, K., Haga, S., Ohta, F., Nomoto, H., Nogata, K., Morishita, T., Endo, T., Shin-I, T., Takeda, H., Morishita, S., Kohara, Y., 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature 477, 714-719.
- Kühnel, D., Busch, W., Meisner, T., Springer, A., Potthoff, A., Richter, V., Gelinsky, M., Scholz, S., Schirmer, K., 2009. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a tainbow trout gill cell line. Aquat. Toxicol. 93, 91-99.
- Komura, J., Mitani, H., Shima, A., 1988. Fish cell culture, establishment of two fibroblast-like cell lines (OL-17 and OL-32) from fins of the medaka, Oryzias latipes. In Vitro Cell Dev. Biol. 24, 294-298.
- Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., 2004. Pulmonary toxicity of single- wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126-134.
- Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P., 2005. Nanowire dye- sensitized solar cells. Nat. Lett. 4, 455-459.
- Madras, G., McCoy, B.J., 2003. Distribution kinetics of Ostwals ripening at large vol- ume fraction and with coalescence. J. Coll. Interf. Sci. 261 (2), 423-433.
- Maxwell, D.J., Taylor, J.R., Nie, S., 2002. Self-assembled nanoparticle probes for recog- nition and detection of biomolecules. J. Am. Chem. Soc. 124, 9606-9612.
- Monteiro-Riviere, N.A., Nemanich, R.J., Inman, A.O., Wang, Y.Y., Riviere, J.E., 2005. Multi-walled carbon nanotube interactions with human epidermal ker- atinocytes. Toxicol. Lett. 155, 377-384.
- Muller, J., Huaux, F., Moreau, F.N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B., Lison, D., 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221-231.
- Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C., 2004. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437-445.
- Pillai, Z.S., Kamat, P.V., 2004. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945-951.
- Reeves, J.F., Davies, S.J., Dodd, N.J.F., Jha, A.N., 2008. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. 640, 113-122.
- Rivas, L., Sanchez-Cortes, S., García-Ramos, J.V., Morcillo, G., 2001. Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhance- ment factor. Langmuir 17, 574-577.
- Rothman, K.J., 1990. No adjustments are necessary for multiple comparisons. Epi- demiology 1, 43-46.
- Sadeghiania, N., Barbosaa, L.S., Silvaa, L.P., Azevedoa, R.B., Moraisb, P.C., Lacavaa, Z.G.M., 2005. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J. Magn. Magn. Mater. 289, 466-468.
- Salata, O., 2004. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3-8.
- SAS Institute, Inc., 2004. SAS/STAT 9.1 User's Guide. SAS Institute, Inc., Cary, NC.
- Satterthwaite, F.W., 1946. An approximate distribution of estimates of variance components. Biometrics Bull. 2, 110-114.
- Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sithara- man, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L., 2004. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4, 1881-1887.
- Shima, A., Mitani, H., 2004. Medaka as a research organism, past, present and future. Mech. Dev. 121, 599-604.
- Shiraishi, Y., Maeda, K., Yoshikawa, H., Xu, J., Toshima, N., Kobayashi, S., 2002. Fre- quency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Appl. Phys. Lett. 81, 2845-2847.
- Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandels- man, V.Z., Maynard, A., Baron, P., 2003. Exposure to carbon nanotube material, assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66, 1909-1926.
- Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wright, C.J., Doak, S.H., 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891-3914.
- Turkevich, J., Stevenson, P.C., Hillier, J., 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 11, 55. Vevers, W.F., Jha, A.N., 2008. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17, 410- 420.
- Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A.M., Webb, T.R., 2004. Comparative pulmonary toxicity assessment of single-wall carbon nan- otubes in rats. Toxicol. Sci. 77, 117-125.
- Wise Sr., J.P., Wise, S.S., Little, J.E., 2002. The cytotoxicity and genotoxicity of par- ticulate and soluble hexavalent chromium in human lung cells. Mutat. Res. 517, 221-229.
- Woodrow Wilson International Center for Scholars, 2008. The Project on Emerging Nanotechnlogies. Consumer Products. An Inventory of Nanotechnology- Based Consumer Products Currently on the Market [cited 2008 May 31] http://www.nanotechproject.org/inventories/consumer/.