Modeling of Branching Patterns in Plants (original) (raw)

Computational models of plant development and form

The use of computational techniques increasingly permeates developmental biology, from the acquisition, processing and analysis of experimental data to the construction of models of organisms. Specifically, models help to untangle the non-intuitive relations between local morphogenetic processes and global patterns and forms. We survey the modeling techniques and selected models that are designed to elucidate plant development in mechanistic terms, with an emphasis on: the history of mathematical and computational approaches to developmental plant biology; the key objectives and methodological aspects of model construction; the diverse mathematical and computational methods related to plant modeling; and the essence of two classes of models, which approach plant morphogenesis from the geometric and molecular perspectives. In the geometric domain, we review models of cell division patterns, phyllotaxis, the form and vascular patterns of leaves, and branching patterns. In the molecular-level domain, we focus on the currently most extensively developed theme: the role of auxin in plant morphogenesis. The review is addressed to both biologists and computational modelers.

MODELLING OF AUXIN CONTROL OF ROOT PATTERNING

2008

Conclusion: In our model increasing auxin flow resulted in appearance of proximal auxin maxima. These maxima in vivo precede the initiation of lateral and adventitious roots. This fact and different model behavior at two sets of parameters indicated that the difference in the auxin acropetal transport regulation may be the main factor responsible for plant diversity in root architecture.

Understanding shoot branching by modelling form and function

Trends in Plant Science, 2011

Shoot branching plays a pivotal role in the development of the aboveground plant structure. Therefore, to understand branching in relation to the environment, it is not only necessary to integrate the knowledge on mechanisms that regulate branching at multiple levels of biological organisation, but also to include plant structure explicitly. To this end, we propose the application of an established methodology called functional-structural plant modelling.

Morphogenesis in plants: modeling the shoot apical meristem, and possible applications

1999

Abstract A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem.

Modeling Plant Growth and Development

Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a wellestablished methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.

A mathematical basis for plant patterning derived from physico-chemical phenomena

BioEssays : news and reviews in molecular, cellular and developmental biology, 2013

The position of leaves and flowers along the stem axis generates a specific pattern, known as phyllotaxis. A growing body of evidence emerging from recent computational modeling and experimental studies suggests that regulators controlling phyllotaxis are chemical, e.g. the plant growth hormone auxin and its dynamic accumulation pattern by polar auxin transport, and physical, e.g. mechanical properties of the cell. Here we present comprehensive views on how chemical and physical properties of cells regulate the pattern of leaf initiation. We further compare different computational modeling studies to understand their scope in reproducing the observed patterns. Despite a plethora of experimental studies on phyllotaxis, understanding of molecular mechanisms of pattern initiation in plants remains fragmentary. Live imaging of growth dynamics and physicochemical properties at the shoot apex of mutants displaying stable changes from one pattern to another should provide mechanistic insights into organ initiation patterns.

Towards mechanistic models of plant organ growth

Journal of Experimental Botany, 2012

Modelling and simulation are increasingly used as tools in the study of plant growth and developmental processes. By formulating experimentally obtained knowledge as a system of interacting mathematical equations, it becomes feasible for biologists to gain a mechanistic understanding of the complex behaviour of biological systems. In this review, the modelling tools that are currently available and the progress that has been made to model plant development, based on experimental knowledge, are described. In terms of implementation, it is argued that, for the modelling of plant organ growth, the cellular level should form the cornerstone. It integrates the output of molecular regulatory networks to two processes, cell division and cell expansion, that drive growth and development of the organ. In turn, these cellular processes are controlled at the molecular level by hormone signalling. Therefore, combining a cellular modelling framework with regulatory modules for the regulation of cell division, expansion, and hormone signalling could form the basis of a functional organ growth simulation model. The current state of progress towards this aim is that the regulation of the cell cycle and hormone transport have been modelled extensively and these modules could be integrated. However, much less progress has been made on the modelling of cell expansion, which urgently needs to be addressed. A limitation of the current generation models is that they are largely qualitative. The possibilities to characterize existing and future models more quantitatively will be discussed. Together with experimental methods to measure crucial model parameters, these modelling techniques provide a basis to develop a Systems Biology approach to gain a fundamental insight into the relationship between gene function and whole organ behaviour.

Mathematical modeling of plant morphogenesis

Numerical Analysis and Applications, 2008

Current trends in biology call for analysis of the bulk information accumulated through mathematical simulations of biological processes aiming at revealing certain regularities and verifying hypotheses and predictions. Evolution of organisms is of special interest to mathematical modeling because it integrates a great body of different processes varying over time and over space. In this paper, models of biological processes as related to plant development are reviewed. The models are classified, and approaches to problems that are most intricate from the simulation standpoint, as well as relevant mathematical methods, are described.

Modeling plant morphogenesis at different scales, from genes to phenotypes

2007

[ INRIA, partial time ] 2. Overall Objectives 2.1. Overall Objectives The Virtual Plants team is a joint team between INRIA, CIRAD and INRA. It is located in Montpellier. The long-term focus of the project is to study plant development and its control by genetic processes. Plants are branching living organisms that develop throughout their lifetimes. Organs are created by small embryogenetic regions at the tip of each axis, called apical meristems. In the project Virtual Plants, we are interested in studying plant apical meristem functioning and development. We believe that a detailed analysis of apical meristem processes, based on advanced mathematical and computational methods and tools, will lead us to get a deeper and better understanding of plant development.