Future role of large neutral amino acids in transport of phenylalanine into the brain (original) (raw)

Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice

PLOS ONE, 2015

Background Phenylketonuria (PKU) was the first disorder in which severe neurocognitive dysfunction could be prevented by dietary treatment. However, despite this effect, neuropsychological outcome in PKU still remains suboptimal and the phenylalanine-restricted diet is very demanding. To improve neuropsychological outcome and relieve the dietary restrictions for PKU patients, supplementation of large neutral amino acids (LNAA) is suggested as alternative treatment strategy that might correct all brain biochemical disturbances caused by high blood phenylalanine, and thereby improve neurocognitive functioning. Objective As a proof-of-principle, this study aimed to investigate all hypothesized biochemical treatment objectives of LNAA supplementation (normalizing brain phenylalanine, non-phenylalanine LNAA, and monoaminergic neurotransmitter concentrations) in PKU mice. Methods C57Bl/6 Pah-enu2 (PKU) mice and wild-type mice received a LNAA supplemented diet, an isonitrogenic/isocaloric high-protein control diet, or normal chow. After six weeks of dietary treatment, blood and brain amino acid and monoaminergic neurotransmitter concentrations were assessed. Results In PKU mice, the investigated LNAA supplementation regimen significantly reduced blood and brain phenylalanine concentrations by 33% and 26%, respectively, compared to normal PLOS ONE |

Large neutral amino acid supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria: evidence from adult Pah-enu2 mice

The Journal of nutritional biochemistry, 2017

Phenylketonuria treatment mainly consists of a phenylalanine-restricted diet but still results in suboptimal neuropsychological outcome, which is at least partly based on cerebral monoamine deficiencies, while, after childhood, treatment compliance decreases. Supplementation of large neutral amino acids (LNAAs) was previously demonstrated in young phenylketonuria mice to target all three biochemical disturbances underlying brain dysfunction in phenylketonuria. However, both its potential in adult phenylketonuria and the comparison with the phenylalanine-restricted diet remain to be established. To this purpose, several LNAA supplements were compared with a severe phenylalanine-restricted diet with respect to brain monoamine and amino acid concentrations in adult C57Bl/6 Pah-enu2 mice. Adult phenylketonuria mice received a phenylalanine-restricted diet, unrestricted diet supplemented with several combinations of LNAAs or AIN-93M control diet for 6 weeks. In addition, adult wild-type ...

The Benefit of Large Neutral Amino Acid Supplementation to a Liberalized Phenylalanine-Restricted Diet in Adult Phenylketonuria Patients: Evidence from Adult Pah-Enu2 Mice

Nutrients

Many phenylketonuria (PKU) patients cannot adhere to the severe dietary restrictions as advised by the European PKU guidelines, which can be accompanied by aggravated neuropsychological impairments that, at least in part, have been attributed to brain monoaminergic neurotransmitter deficiencies. Supplementation of large neutral amino acids (LNAA) to an unrestricted diet has previously been shown to effectively improve brain monoamines in PKU mice of various ages. To determine the additive value of LNAA supplementation to a liberalized phenylalanine-restricted diet, brain and plasma monoamine and amino acid concentrations in 10 to 16-month-old adult C57Bl/6 PKU mice on a less severe phenylalanine-restricted diet with LNAA supplementation were compared to those on a non-supplemented severe or less severe phenylalanine-restricted diet. LNAA supplementation to a less severe phenylalanine-restricted diet was found to improve both brain monoamine and phenylalanine concentrations. Compared...

Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model

The American journal of clinical nutrition, 2016

Phenylketonuria treatment consists mainly of a Phe-restricted diet, which leads to suboptimal neurocognitive and psychosocial outcomes. Supplementation of large neutral amino acids (LNAAs) has been suggested as an alternative dietary treatment strategy to optimize neurocognitive outcome in phenylketonuria and has been shown to influence 3 brain pathobiochemical mechanisms in phenylketonuria, but its optimal composition has not been established. In order to provide additional pathobiochemical insight and develop optimal LNAA treatment, several targeted LNAA supplements were investigated with respect to all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria. Pah-enu2 (PKU) mice received 1 of 5 different LNAA-supplemented diets beginning at postnatal day 45. Control groups included phenylketonuria mice receiving an isonitrogenic and isocaloric high-protein diet or the AIN-93M diet, and wild-type mice receiving the AIN-93M diet. After 6 wk, brain and plasma amino...

Large neutral amino acids supplementation in phenylketonuric patients

Journal of Inherited Metabolic Disease, 2009

Phenylketonuria is an inborn error of amino acid metabolism that results in severe mental retardation if not treated early and appropriately. The traditional treatment, consisting of a low-phenylalanine diet, is usually difficult to maintain throughout adolescence and adulthood, resulting in undesirable levels of blood phenylalanine and consequent neurotoxicity. The neurotoxicity of phenylalanine is enhanced by its transport mechanism across the blood-brain barrier, which has the highest affinity for phenylalanine compared with the other large neutral amino acids that share the same carrier. The supplementation of large neutral amino acids in phenylketonuric patients has been showing interesting results. Plasma phenylalanine levels can be reduced, which may guarantee important metabolic and clinical benefits to these patients. Although long-term studies are needed to determine the efficacy and safety of large neutral amino acids supplements, the present state of knowledge seems to recommend their prescription to all phenylketonuric adult patients who are non-compliant with the low-phenylalanine diet.

Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment

Molecular Genetics and Metabolism, 2003

Six subjects with classical phenylketonuria (PKU) were treated with large neutral amino acid supplements (PreKUnil, Nilab, Dk) at 0.4 g/kg/day in equally divided doses three times each day on an increased natural protein diet. All six subjects had low or deficient blood concentrations of both tyrosine and tryptophan, which are precursors for dopamine and serotonin, respectively, at the beginning of the study and were increased substantially throughout the study. Blood phenylalanine concentrations remained essentially unchanged, while the brain phenylalanine concentrations gradually decreased toward the carrier range as seen in parents of children with PKU. Two subjects were diagnosed with clinical depression and were in counseling programs at initiation of the study. At the end of the study all patients reported increased energy and overall improvement in well-being.

Large neutral amino acids in the treatment of PKU: from theory to practice

Journal of Inherited Metabolic Disease, 2010

Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cognitive outcome and quality of life in patients with PKU. Following various theories about the pathogenesis of cognitive dysfunction in PKU, LNAA supplementation may have multiple treatment targets: a specific reduction in brain phenylalanine concentrations, a reduction in blood (and consequently brain) phenylalanine concentrations, an increase in brain neurotransmitter concentrations, and an increase in brain essential amino acid concentrations. These treatment targets imply different treatment regimes. This review summarizes the treatment targets and the treatment regimens of LNAA supplementation and discusses the differences in LNAA intake between the classical dietary phenylalanine-restricted diet and several LNAA treatment forms.

Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria

Nutrients, 2020

Phenylketonuria is an inborn error of phenylalanine (Phe) metabolism diagnosed by newborn screening and treated early with diet. Although diet prevents intellectual disability, patients often show impairment of executive functions, working memory, sustained attention, and cognitive flexibility. Large neutral amino acids (LNAAs) have been proposed as a dietary supplement for PKU adults. Few studies show that LNAAs may help in improving metabolic control as well as cognitive functions. In this study, 10 adult PKU patients with poor metabolic control were treated for 12 months with LNAAs (MovisCom, 0.8–1 g/kg/day) and underwent Phe and Tyrosine (Tyr) monitoring monthly. Neuropsychological assessment was performed at T0, T+3, and T+12 months by using the American Psychological General Well-Being Index, the Wisconsin Card Sorting Test, the Test of Attentional Performance, and the 9-Hole Peg Test. No change in plasma Phe levels was observed during LNAAs supplementation, while Tyr levels s...

Beneficial Effects of Slow-Release Large Neutral Amino Acids after a Phenylalanine Oral Load in Patients with Phenylketonuria

Nutrients, 2021

The mainstay of phenylketonuria treatment is a low protein diet, supplemented with phenylalanine (Phe)-free protein substitutes and micronutrients. Adhering to this diet is challenging, and even patients with good metabolic control who follow the dietary prescriptions in everyday life ignore the recommendations occasionally. The present study explores the ability of slow-release large neutral amino acids (srLNAAs) to prevent Phe increase following a Phe dietary load. Fourteen phenylketonuric patients aged ≥13 years were enrolled in a 6-week protocol. Oral acute Phe loads of 250 and 500 mg were added to the evening meal together with srLNAAs (0.5 gr/kg). Phe and tyrosine were dosed before dinner, 2h-after dinner, and after the overnight fast. After oral Phe loads, mean plasma Phe remained stable and below 600 µmol/L. No Phe peaks were registered. Tyrosine levels significantly increased, and Phe/Tyrosine ratio decreased. No adverse events were registered. In conclusion, a single oral ...