Critical Hardy–Sobolev inequalities (original) (raw)
Abstract
We consider Hardy inequalities in R n , n 3, with best constant that involve either distance to the boundary or distance to a surface of co-dimension k < n, and we show that they can still be improved by adding a multiple of a whole range of critical norms that at the extreme case become precisely the critical Sobolev norm.
Figures (4)
Theorem 3.3. Let 2 < p <n. We assume that Q is a bounded domain of class C*. Then there exist positive constants M = M(n, p, 82) and C =C(n, p) such that for all u € cx (2), there holds:
Remark 1. We note that estimate (4.13) fails when k =n (see (4.21)). This is not accidental as we shall see in the next section. Remark 2. The choice a = - corresponds to the Hardy—Sobolev inequality as it will become clear in the next section. We note that the corresponding estimate for a € R and b, p, g as in (4.12) remains true. Thus, there exists a positive constant C = C(a,n, p,q,k) such that for all v € C§°(2 \ K) there holds:
Remark. The result is not true in case k = n, as discussed in the introduction.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (22)
- Adimurthi, M.J. Esteban, An improved Hardy-Sobolev inequality in W 1,p and its application to Schrödinger operators, NoDEA Nonlinear Differential Equations Appl. 12 (2) (2005) 243-263.
- L. Ambrosio, H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension, J. Differential Geom. 43 (1996) 693-737.
- R.J. Biezuner, Best constants in Sobolev trace inequalities, Nonlinear Anal. 54 (3) (2003) 575-589.
- G. Barbatis, S. Filippas, A. Tertikas, A unified approach to improved L p Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (6) (2004) 2169-2196.
- H. Brezis, M. Marcus, Hardy's inequalities revisited, Ann. Scuola Norm. Pisa 25 (1997) 217-237.
- H. Brezis, J.-L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Comp. Madrid 10 (1997) 443-469.
- X. Cabré, Y. Martel, Existence versus instantaneous blowup for linear heat equations with singular potentials, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999) 973-978.
- J. Dávila, L. Dupaigne, Hardy-type inequalities, J. Eur. Math. Soc. 6 (3) (2004) 335-365.
- J. Dolbeault, M.J. Esteban, M. Loss, L. Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal. 216 (1) (2004) 1-21.
- S. Filippas, V.G. Maz'ya, A. Tertikas, A sharp Hardy Sobolev inequality, C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 483-486.
- S. Filippas, V.G. Maz'ya, A. Tertikas, On a question of Brezis and Marcus, Calc. Var. Partial Differential Equations 25 (4) (2006) 491-501.
- S. Filippas, A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal. 192 (2002) 186-233.
- J.P. Garcia, I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998) 441-476.
- D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.
- E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5, Amer. Math. Soc., Providence, RI, 1999.
- M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, A geometrical version of Hardy's inequality, J. Funct. Anal. 189 (2002) 539-548.
- M. Marcus, V.J. Mizel, Y. Pinchover, On the best constant for Hardy's inequality in R n , Trans. Amer. Math. Soc. 350 (1998) 3237-3255.
- V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin/New York, 1985.
- D. Slepcev, On level set approach to motion of manifolds of arbitrary codimension, Interfaces and Free Boundaries 5 (2003) 417-458.
- J. Tidblom, A geometrical version of Hardy's inequality for W 1,p 0 (Ω), Proc. Amer. Math. Soc. 132 (8) (2004) 2265-2271.
- J. Tidblom, A Hardy inequality in the half-space, J. Funct. Anal. 221 (2) (2005) 482-495.
- J.L. Vásquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000) 103-153.