Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy (original) (raw)

Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation

Optics Express, 2013

In this study we show that it is possible to successfully combine the benefits of light-sheet microscopy, self-reconstructing Bessel beams and two-photon fluorescence excitation to improve imaging in large, scattering media such as cancer cell clusters. We achieved a nearly two-fold increase in axial image resolution and 5-10 fold increase in contrast relative to linear excitation with Bessel beams. The light-sheet penetration depth could be increased by a factor of 3-5 relative to linear excitation with Gaussian beams. These finding arise from both experiments and computer simulations. In addition, we provide a theoretical description of how these results are composed. We investigated the change of image quality along the propagation direction of the illumination beams both for clusters of spheres and tumor multicellular spheroids. The results reveal that light-sheets generated by pulsed near-infrared Bessel beams and two photon excitation provide the best image resolution, contrast at both a minimum amount of artifacts and signal degradation along the propagation of the beam into the sample.

Light-sheet microscopy with isotropic, sub-micron resolution and solvent-independent large-scale imaging

2019

We present cleared tissue Axially Swept Light-Sheet Microscopy (ctASLM), which achieves sub-micron isotropic resolution, high optical sectioning capability, and large field of view imaging (870×870 μm2) over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and organic chemically cleared tissue preparations and provides 2- to 5-fold better axial resolution than confocal or other reported cleared tissue light-sheet microscopes. We image millimeter-sized tissues with sub-micron 3D resolution, which enabled us to perform automated detection of cells and subcellular features such as dendritic spines.

LITE microscopy: a technique for high numerical aperture, low photobleaching fluorescence imaging

2017

Fluorescence microscopy is a powerful approach for studying sub-cellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel LSFM method: Lateral Interference Tilted Excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically-limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightn...

Recent Progress in Light Sheet Microscopy for Biological Applications

Applied Spectroscopy

The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, sing...