Multidrug Resistance Protein. IDENTIFICATION OF REGIONS REQUIRED FOR ACTIVE TRANSPORT OF LEUKOTRIENE C4 (original) (raw)
Journal of Biological Chemistry, 1998
Abstract
Multidrug resistance protein (MRP) is a broad specificity, primary active transporter of organic anion conjugates that confers a multidrug resistance phenotype when transfected into drug-sensitive cells. The protein was the first example of a subgroup of the ATP-binding cassette superfamily whose members have three membrane-spanning domains (MSDs) and two nucleotide binding domains. The role(s) of the third MSD of MRP and its related transporters is not known. To begin to address this question, we examined the ability of various MRP fragments, expressed individually and in combination, to transport the MRP substrate, leukotriene C4 (LTC4). We found that elimination of the entire NH2-terminal MSD or just the first putative transmembrane helix, or substitution of the MSD with the comparable region of the functionally and structurally related transporter, the canalicular multispecific organic anion transporter (cMOAT/MRP2), had little effect on protein accumulation in the membrane. However, all three modifications decreased LTC4 transport activity by at least 90%. Transport activity could be reconstituted by co-expression of the NH2-terminal MSD with a fragment corresponding to the remainder of the MRP molecule, but this required both the region encoding the transmembrane helices of the NH2-terminal MSD and the cytoplasmic region linking it to the next MSD. In contrast, a major part of the cytoplasmic region linking the NH2-proximal nucleotide binding domain of the protein to the COOH-proximal MSD was not required for active transport of LTC4.
Christopher Westlake hasn't uploaded this paper.
Let Christopher know you want this paper to be uploaded.
Ask for this paper to be uploaded.