Voltage-gated potassium channels in multiple sclerosis: Overview and new implications for treatment of central nervous system inflammation and degeneration (original) (raw)
Related papers
Proceedings of the National Academy of Sciences, 2005
postmortem MS brain inflammatory infiltrates. The expression pattern revealed not only Kv1.3 ؉ T cells in the perivenular infiltrate but also high expression in the parenchyma of demyelinated MS lesions and both normal appearing gray and white matter. These cells were uniformly chemokine receptor 7 negative (CCR7 ؊ ), consistent with an effector memory phenotype. Using doublelabeling immunohistochemistry and confocal microscopy, we demonstrated colocalization of Kv1.3 with CD3, CD4, CD8, and some CD68 cells. The expression patterns mirrored in vitro experiments showing polarization of Kv1.3 to the immunological synapse. Kv1.3 was expressed in low to moderate levels on CCR7 ؉ central memory T cells from cerebrospinal fluid, but, when these cells were stimulated in vitro, they rapidly became Kv1.3 high ͞CCR7 ؊ TEM, suggesting that a subset of cerebrospinal fluid cells existed in a primed state ready to become T EM. These studies provide further rationale for the use of specific Kv1.3 antagonists in MS. lymphocytes ͉ macrophages ͉ cerebrospinal fluid ͉ effector memory
The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis
Neurochemical Research, 2019
Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.5 are responsible for fine-tuning in the immune physiology and influence proliferation and differentiation in microglia and astrocytes. Here, we explored the cellular distribution of the Kv1.5 channel, together with its transcript and protein expression in the male rat spinal cord during different stages of EAE. Our results reveal a decrease of Kv1.5 transcript and protein level at the peak of disease, where massive infiltration of myeloid cells occurs, together with reactive astrogliosis and demyelination. Also, we revealed that the presence of this channel is not found in infiltrating macrophages/microglia during EAE. It is interesting to note that Kv1.5 channel is expressed only in resting microglia in the naïve animals. Predominant expression of Kv1.5 channel was found in the astrocytes in all experimental groups, while some vimentin + cells, resembling macrophages, are devoid of Kv1.5 expression. Our results point to the possible link between Kv1.5 channel and the pathophysiological processes in EAE.
Neurochemical research, 2018
Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that K...
K+ channel alterations in the progression of experimental autoimmune encephalomyelitis
Neurobiology of Disease, 2012
Voltage-gated K + (Kv) channels play critical roles not only in regulating synaptic transmission and intrinsic excitability of neurons, but also in controlling the function and proliferation of other cells in the central nervous system (CNS). The non-specific Kv channel blocker, 4-AminoPyridine (4-AP) (Dalfampridine, Ampyra®), is currently used to treat multiple sclerosis (MS), an inflammatory demyelinating disease. However, little is known how various types of Kv channels are altered in any inflammatory demyelinating diseases. By using established animal models for MS, experimental autoimmune encephalomyelitis (EAE), we report that expression and distribution patterns of Kv channels are altered in the CNS correlating with EAE severity. The juxtaparanodal (JXP) targeting of Kv1.2/Kvβ2 along myelinated axons is disrupted within demyelinated lesions in the white matter of spinal cord in EAE. Moreover, somatodendritic Kv2.1 channels in the motor neurons of lower spinal cord significantly decrease correlating with EAE severity. Interestingly, Kv1.4 expression surrounding lesions is markedly up-regulated in the initial acute phase of both EAE models. Its expression in glial fibrillary acidic protein (GFAP)-positive astrocytes further increases in the remitting phase of remitting-relapsing EAE (rrEAE), but decreases in late chronic EAE (chEAE) and the relapse of rrEAE, suggesting that Kv1.4-positive astrocytes may be neuroprotective. Taken together, our studies reveal myelin-dependent and -independent alterations of Kv channels in the progression of EAE and lay a solid foundation for future study in search of a better treatment for MS.
Pharmacology & Therapeutics, 2006
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination, with a relative sparing of axons. In MS patients, many neurologic signs and symptoms have been attributed to the underlying conduction deficits. The idea that neurologic function might be improved if conduction could be restored in CNS demyelinated axons led to the testing of potassium (K + ) channel blockers as a symptomatic treatment. To date, only 2 broad-spectrum K + channel blockers, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP), have been tested in MS patients. Although both 4-AP and 3,4-DAP produce clear neurologic benefits, their use has been limited by toxicity.
Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis
New England Journal of Medicine, 2012
Background Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Many findings suggest that the disease has an autoimmune pathogenesis; the target of the immune response is not yet known. Methods We screened serum IgG from persons with multiple sclerosis to identify antibodies that are capable of binding to brain tissue and observed specific binding of IgG to glial cells in a subgroup of patients. Using a proteomic approach focusing on membrane proteins, we identified the ATP-sensitive inward rectifying potassium channel KIR4.1 as the target of the IgG antibodies. We used a multifaceted validation strategy to confirm KIR4.1 as a target of the autoantibody response in multiple sclerosis and to show its potential pathogenicity in vivo. Results Serum levels of antibodies to KIR4.1 were higher in persons with multiple sclerosis than in persons with other neurologic diseases and healthy donors (P<0.001 for both comparisons). We replicated this finding in two independent groups of persons with multiple sclerosis or other neurologic diseases (P<0.001 for both comparisons). Analysis of the combined data sets indicated the presence of serum antibodies to KIR4.1 in 186 of 397 persons with multiple sclerosis (46.9%), in 3 of 329 persons with other neurologic diseases (0.9%), and in none of the 59 healthy donors. These antibodies bound to the first extracellular loop of KIR4.1. Injection of KIR4.1 serum IgG into the cisternae magnae of mice led to a profound loss of KIR4.1 expression, altered expression of glial fibrillary acidic protein in astrocytes, and activation of the complement cascade at sites of KIR4.1 expression in the cerebellum. Conclusions KIR4.1 is a target of the autoantibody response in a subgroup of persons with multiple sclerosis. (Funded by the German Ministry for Education and Research and Deutsche Forschungsgemeinschaft.
Proceedings of the National Academy of Sciences, 2001
Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4 + T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel phenotype (“chronically activated”) with large numbers of Kv1.3 voltage-gated channels (≈1500 per cell) and small numbers of IKCa1 Ca 2+ -activated K + channels (≈50–120 per cell). In contrast, resting T cells displayed 0–10 Kv1.3 and 10–20 IKCa1 channels per cell (“quiescent” phenotype), whereas T cells stimulated once or twice expressed ≈200 Kv1.3 and ≈350 IKCa1 channels per cell (“acutely activated” phenotype). Consistent with their channel phenotype, [ 3 H]thymidine incorporation by MBP-stimulated chronically activated T cells was suppressed by the peptide ShK, a blocker of Kv1.3 and IKCa1, and by an analog (ShK-Dap 22 ) engineered to be highly specific for Kv1.3, but not by a sele...
Kv1.3 Channel Up-Regulation in Peripheral Blood T Lymphocytes of Patients With Multiple Sclerosis
Frontiers in Pharmacology, 2021
Voltage-gated Kv1.3 potassium channels are key regulators of T lymphocyte activation, proliferation and cytokine production, by providing the necessary membrane hyper-polarization for calcium influx following immune stimulation. It is noteworthy that an accumulating body of in vivo and in vitro evidence links these channels to multiple sclerosis pathophysiology. Here we studied the electrophysiological properties and the transcriptional and translational expression of T lymphocyte Kv1.3 channels in multiple sclerosis, by combining patch clamp recordings, reverse transcription polymerase chain reaction and flow cytometry on freshly isolated peripheral blood T lymphocytes from two patient cohorts with multiple sclerosis, as well as from healthy and disease controls. Our data demonstrate that T lymphocytes in MS, manifest a significant up-regulation of Kv1.3 mRNA, Kv1.3 membrane protein and Kv1.3 current density and therefore of functional membrane channel protein, compared to control ...