A SAS Monte Carlo Program for Confidence Intervals of the Mediated Effect (original) (raw)
Related papers
Estimating Mediated Effects in Prevention Studies
Evaluation Review, 1993
The purpose of this article is to describe statistical procedures to assess how prevention and intervention programs achieve their effects. The analyses require the measurement of intervening or mediating variables hypothesized to represent the causal mechanism by which the prevention program achieves its effects. Methods to estimate mediation are illustrated in the evaluation of a health promotion program designed to reduce dietary cholesterol and a school-based drug prevention program. The methods are relatively easy to apply and the information gained from such analyses should add to our understanding of prevention.
RMediation: An R package for mediation analysis confidence intervals
Behavior Research Methods
This article describes the RMediation package,which offers various methods for building confidence intervals (CIs) for mediated effects. The mediated effect is the product of two regression coefficients. The distribution-of-the-product method has the best statistical performance of existing methods for building CIs for the mediated effect. RMediation produces CIs using methods based on the distribution of product, Monte Carlo simulations, and an asymptotic normal distribution. Furthermore, RMediation generates percentiles, quantiles, and the plot of the distribution and CI for the mediated effect. An existing program, called PRODCLIN, published in Behavior Research Methods, has been widely cited and used by researchers to build accurate CIs. PRODCLIN has several limitations: The program is somewhat cumbersome to access and yields no result for several cases. RMediation described herein is based on the widely available R software, includes several capabilities not available in PRODCLIN, and provides accurate results that PRODCLIN could not.
Comparison of methods for constructing confidence intervals of standardized indirect effects
Behavior Research Methods, 2009
Mediation models are often used as a means to explain the psychological mechanisms between an independent and a dependent variable in the behavioral and social sciences. A major limitation of the unstandardized indirect effect calculated from raw scores is that it cannot be interpreted as an effect-size measure. In contrast, the standardized indirect effect calculated from standardized scores can be a good candidate as a measure of effect size because it is scale invariant. In the present article, 11 methods for constructing the confidence intervals (CIs) of the standardized indirect effects were evaluated via a computer simulation. These included six Wald CIs, three bootstrap CIs, one likelihood-based CI, and the PRODCLIN CI. The results consistently showed that the percentile bootstrap, the bias-corrected bootstrap, and the likelihood-based approaches had the best coverage probability. Mplus, LISREL, and Mx syntax were included to facilitate the use of these preferred methods in applied settings. Future issues on the use of the standardized indirect effects are discussed.
Distribution of the product confidence limits for the indirect effect: Program PRODCLIN
Behavior Research Methods, 2007
This article describes a program, PRODCLIN (distribution of the PRODuct Confidence Limits for INdirect effects), written for SAS, SPSS, and R, that computes confidence limits for the product of two normal random variables. The program is important because it can be used to obtain more accurate confidence limits for the indirect effect, as demonstrated in several recent articles . Tests of the significance of and confidence limits for indirect effects based on the distribution of the product method have more accurate Type I error rates and more power than other, more commonly used tests. Values for the two paths involved in the indirect effect and their standard errors are entered in the PRODCLIN program, and distribution of the product confidence limits are computed. Several examples are used to illustrate the PRODCLIN program. The PRODCLIN programs in rich text format may be downloaded from www.psychonomic.org/archive.
Multivariate Behavioral Research, 2019
Complex mediation models, such as a two-mediator sequential model, have become more prevalent in the literature. To test an indirect effect in a two-mediator model, we conducted a large-scale Monte Carlo simulation study of the Type I error, statistical power, and confidence interval coverage rates of 10 frequentist and Bayesian confidence/credible intervals (CIs) for normally and nonnormally distributed data. The simulation included never-studied methods and conditions (e.g., Bayesian CI with flat and weakly informative prior methods, two model-based bootstrap methods, and two nonnormality conditions) as well as understudied methods (e.g., profile-likelihood, Monte Carlo with maximum likelihood standard error [MC-ML] and robust standard error [MC-Robust]). The popular BC bootstrap showed inflated Type I error rates and CI under-coverage. We recommend different methods depending on the purpose of the analysis. For testing the null hypothesis of no mediation, we recommend MC-ML, profile-likelihood, and two Bayesian methods. To report a CI, if data has a multivariate normal distribution, we recommend MC-ML, profilelikelihood, and the two Bayesian methods; otherwise, for multivariate nonnormal data we recommend the percentile bootstrap. We argue that the best method for testing hypotheses is not necessarily the best method for CI construction, which is consistent with the findings we present.
Statistical Methods & Applications, 2016
Mediation analysis often requires larger sample sizes than main effect analysis to achieve the same statistical power. Combining results across similar trials may be the only practical option for increasing statistical power for mediation analysis in some situations. In this paper, we propose a method to estimate: 1) marginal means for mediation path a, the relation of the independent variable to the mediator; 2) marginal means for path b, the relation of the mediator to the outcome, across multiple trials; and 3) the between-trial level variance-covariance matrix based on a bivariate normal distribution. We present the statistical theory and an R computer program to combine regression coefficients from multiple trials to estimate a combined mediated effect and confidence interval under a random effects model. Values of coefficients a and b, along with their standard errors from each trial are the input for the method. This marginal likelihood based approach with Monte Carlo confidence intervals provides more accurate inference than the standard meta-analytic approach. We discuss computational issues, apply the method to two realdata examples and make recommendations for the use of the method in different settings.
Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods
The most commonly used method to test an indirect effect is to divide the estimate of the indirect effect by its standard error and compare the resulting z statistic with a critical value from the standard normal distribution. Confidence limits for the indirect effect are also typically based on critical values from the standard normal distribution. This article uses a simulation study to demonstrate that confidence limits are imbalanced because the distribution of the indirect effect is normal only in special cases. Two alternatives for improving the performance of confidence limits for the indirect effect are evaluated: (a) a method based on the distribution of the product of two normal random variables, and (b) resampling methods. In Study 1, confidence limits based on the distribution of the product are more accurate than methods based on an assumed normal distribution but confidence limits are still imbalanced. Study 2 demonstrates that more accurate confidence limits are obtained using resampling methods, with the bias-corrected bootstrap the best method overall.
Frontiers in Psychology, 2020
In many disciplines, mediating processes are usually investigated with randomized experiments and linear regression to determine if the treatment affects the outcome through a mediator. However, randomizing the treatment will not yield accurate causal direct and indirect estimates unless certain assumptions are satisfied since the mediator status is not randomized. This study describes methods to estimate causal direct and indirect effects and reports the results of a large Monte Carlo simulation study on the performance of the ordinary regression and modern causal mediation analysis methods, including a previously untested doubly robust sequential g-estimation method, when there are confounders of the mediator-to-outcome relation. Results show that failing to measure and incorporate potential post-treatment confounders in a mediation model leads to biased estimates, regardless of the analysis method used. Results emphasize the importance of measuring potential confounding variables and conducting sensitivity analysis.
Bootstrapping the standard error of the mediated effect
1998
Mediation analysis seeks to go beyond the question of equations, using the notation from MacKinnon, Warsi, whether an independent variable causes a change in a and Dwyer (1995). dependent variable. Mediation addresses the question of how that change occurs. When a third variable is thought to be intermediate in the relationship between two variables, it is called a mediator. In order to test the mediated effect for significance, or to create confidence limits for the effect, the standard error of the effect is needed. Estimates of the standard error can fluctuate widely when sample size is small or when the variables are not normally distributed. Bootstrapping is a method that resamples from an original sample to derive a more accurate estimate than is found through traditional methods. This paper describes a SAS program that estimates the mediated effect of a sample, takes bootstrap samples, and calculates the standard error and confidence limits of the mediated effect. The audience should have an understanding of multiple regression analysis. This program was written with base SAS software and operates in a regular PC environment.
Causal Mediation Programs in R, Mplus, SAS, SPSS, and Stata
Structural Equation Modeling: A Multidisciplinary Journal, 2020
Mediation analysis is a methodology used to understand how and why an independent variable (X) transmits its effect to an outcome (Y) through a mediator (M). New causal mediation methods based on the potential outcomes framework and counterfactual framework are a seminal advancement for mediation analysis, because they focus on the causal basis of mediation analysis. There are several programs available to estimate causal mediation effects, but these programs differ substantially in data set up, estimation, output, and software platform. To compare these programs, an empirical example is presented, and a single mediator model with treatment-mediator interaction was estimated with a continuous mediator and a continuous outcome in each program. Even though the software packages employ different estimation methods, they do provide similar causal effect estimates for mediation models with a continuous mediator and outcome. A detailed explanation of program similarities, unique features, and recommendations is discussed.