Magnetovolume and magnetocaloric effects in Er_{2}Fe_{17} (original) (raw)

Abstract

Combining different experimental techniques, investigations in Er 2 Fe 17 show that this material exhibits a spontaneous magnetostriction that reaches 1.6 × 10 −2 at 5 K and goes down to zero well above the Curie temperature, T C , owing to short-range magnetic correlations. Besides, Er 2 Fe 17 exhibits direct and inverse magneto-caloric effects (MCE) with moderate isothermal magnetic entropy, ∆S M , and adiabatic temperature, ∆T ad , changes (∆S M ∼ −4.7 J/kgK and ∆T ad ∼ −2.5 K near T C , and ∆S M ∼ 1.5 J/kgK and ∆T ad ∼ 0.6 K at 40 K for ∆H = 80 kOe, respectively). The existence of an inverse MCE seems to be related to a crystalline electric field-level crossover in the Er-sublattice and the ferrimagnetic arrangement between the magnetic moments of the Er-and Fe-sublattice. The main trends found experimentally for the temperature dependences of ∆S M and ∆T ad , as well as for the atomic magnetic moments, are qualitatively well described considering a mean field Hamiltonian that incorporates both crystalline electric field and exchange interactions. However, the discrepancies occurring in the temperature range (110 K, 250 K), where the experimental ∆S M and ∆T ad are almost zero and the theoretical curves show a unique cutoff, and the fact that the cell volume of Er 2 Fe 17 exhibits an almost constant value in the same temperature range, lead to the conclusion that the interplay between MCE and magneto-volume anomalies is fundamental to understand the physical properties of this intermetallic compound. PACS numbers: 61.05.C-, 61.05.F-, 75.10.Hk, 75.30.Kz, 75.30.Sg.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (73)

  1. V. Hari Babu, G. Markandeyulu, and A. Subrahmanyam, Appl. Phys. Lett. 90 (2007).
  2. S. B. Roy, P. Chaddah, V. K. Pecharsky, and K. A. Gschneidner Jr., Acta Mater. 56, 5895 (2008).
  3. S. N. Jammalamadaka, N. Mohapatra, S. D. Das, and E. V. Sampathkumaran, Phys. Rev. B 79, 060403(R) (2009).
  4. K. H. J. Buschow, Rep. Prog. Phys. 40, 1179 (1977).
  5. K. A. Gschneidner Jr, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).
  6. P. Gorria, J. L. Sánchez Llamazares, P. Álvarez, M. J. Pérez, J. Sánchez Marcos, and J. A. Blanco, J. Phys. D: Appl. Phys. 41, 192003 (2008).
  7. J. L. Wang, S. J. Campbell, O. Tegus, C. Marquina, and M. R. Ibarra, Phys. Rev. B 75, 174423 (2007).
  8. A. Kreyssig, S. Chang, Y. Janssen, J. W. Kim, S. Nandi, J. Q. Yan, L. Tan, R. J. McQueeney, P. C. Canfield, and A. I. Goldman, Phys. Rev. B 76, 054421 (2007).
  9. R. Boada, C. Piquer, M. A. Laguna-Marco, and J. Chaboy, Phys. Rev. B 82, 052407 (2010).
  10. M. Palit, J. A. Chelvane, H. Basumatary, S. Banumathy, A. K. Singh, S. Pandian, and V. Chan- drasekaran, Intermetallics 18, 1027 (2010).
  11. T. B. Massalski, Binary alloy phase diagrams, 2nd ed. (Asm Intl, 1990).
  12. D. Givord, R. Lemaire, W. James, J. M. Moreau, and J. Shah, IEEE Trans. Magn. 7, 657659 (1971).
  13. D. Givord and R. Lemaire, IEEE Trans. Magn. 10, 109 (1974).
  14. J. B. A. A. Elemans and K. H. J. Buschow, Phys. Status Solidi A 24, K125 (1974).
  15. Y. Janssen, S. Chang, A. Kreyssig, A. Kracher, Y. Mozharivskyj, S. Misra, and P. C. Canfield, Phys. Rev. B 76, 054420 (2007).
  16. P. Gorria, P. Álvarez, J. Sánchez-Marcos, J. L. Sánchez-Llamazares, M. J. Pérez, and J. A. Blanco, Acta Mater. 57, 1724 (2009).
  17. A. V. Andreev, F. R. de Boer, T. H. Jacobs, and K. H. J. Buschow, Physica B 175, 361 (1991).
  18. G. J. Long, G. K. Marasinghe, S. Mishra, O. A. Pringle, Z. Hu, W. B. Yelon, D. P. Middleton, K. H. J. Buschow, and F. Grandjean, J. Appl. Phys. 76, 5383 (1994).
  19. J. M. D. Coey, Rare-earth iron permanent magnets, 1st ed. (Oxford University Press, 1996).
  20. F. Grandjean, O. Isnard, D. Hautot, and G. J. Long, Phys. Rev. B 63, 014406 (2000).
  21. K. Mandal, A. Yan, P. Kerschl, A. Handstein, O. Gutfleisch, and K. Muller, J. Phys. D: Appl. Phys. 37, 2628 (2004).
  22. Y. V. Knyazev, A. V. Lukoyanov, Y. I. Kuz'min, A. G. Kuchin, Nekrasov, and I. A., Phys. Rev. B 73, 094410 (2006).
  23. F. Canepa, S. Cirafici, M. Napoletano, and R. Masini, Phys. Rev. B 76, 104402 (2007).
  24. M. D. Kuz'min, Y. Skourski, K. P. Skokov, K. H. Müller, and O. Gutfleisch, Phys. Rev. B 77, 132411 (2008).
  25. P. Álvarez, P. Gorria, V. Franco, J. Sánchez Marcos, M. J. Pérez, J. L. Sánchez Ll., I. Puente Orench, and J. A. Blanco, J. Phys.: Condes. Matter 22, 216005 (2010).
  26. Y. Li, R. G. Graham, D. S. Bunbury, P. W. Mitchell, and M. A. H. McCausland, J. Magn. Magn. Mater. 140-144, 1007 (1995).
  27. A. Lukoyanov, E. Kokorina, M. Medvedev, and I. Nekrasov, Phys. Rev. B 80, 104409 (2009).
  28. R. Kumar and W. B. Yelon, J. Appl. Phys. 67, 4641 (1990).
  29. I. S. Tereshina, S. A. Nikitin, J. Stepien-Damm, L. D. Gulay, N. Y. Pankratov, A. A. Salamova, V. N. Verbetsky, and W. Suski, J. Alloys Compd. 329, 31 (2001).
  30. I. Tereshina, S. Nikitin, W. Suski, J. Stepien-Damm, W. Iwasieczko, H. Drulis, and K. Skokov, J. Alloys Compd. 404-406, 172 (2005).
  31. N. Yang, K. W. Dennis, R. W. McCallum, M. J. Kramer, Y. Zhang, and P. L. Lee, J. Magn. Magn. Mater. 311, 630 (2007).
  32. P. Alvarez, J. L. Sanchez-Llamazares, M. J. Perez, B. Hernando, J. D. Santos, J. Sanchez Mar- cos, J. A. Blanco, and P. Gorria, J. Non-Cryst. Solids 354, 5172 (2008).
  33. J. L. Sánchez Ll., M. J. Pérez, P. Álvarez, J. D. Santos, M. L. Sánchez, B. Hernando, J. A. Blanco, J. Sánchez-Marcos, and P. Gorria, J. Alloys Compd. 483, 682 (2009).
  34. E. Brück, J. Phys. D: Appl. Phys. 38, R381 (2005).
  35. O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater. 23, 821 (2011).
  36. O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).
  37. A. Yan, K. H. Müller, and O. Gutfleisch, J Appl. Phys. 97, 036102 (2005).
  38. P. Álvarez, J. Sánchez-Marcos, P. Gorria, L. Fernández Barquín, and J. A. Blanco, J. Alloys Compd. 504, S150 (2010).
  39. P. Álvarez, P. Gorria, and J. A. Blanco, Phys. Rev. B 84, 024412 (2011).
  40. A. Rowe and A. Tura, Int. J. Refrig. 29, 1286 (2006).
  41. P. Álvarez, J. L. Sánchez Llamazares, P. Gorria, and J. A. Blanco, Appl. Phys. Lett. 99, 232501 (2011).
  42. K. A. Gschneidner Jr, J. Alloys Compd. 193, 1 (1993).
  43. A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, High Pressure Research 14, 235 (1996).
  44. J. Rodríguez-Carvajal, Physica B 192, 55 (1993).
  45. A. R. Dinesen, S. Linderoth, and S. Morup, J. Phys.: Condes. Matter 17, 6257 (2005).
  46. M. Hutchings, in Solid State Physics, Vol. 16 (Elsevier, 1964) pp. 227-273.
  47. K. Clausen and B. Lebech, J. Phys. C: Solid State Phys. 15, 5095 (1982).
  48. J. A. Blanco, D. Gignoux, J. C. Gómez Sal, and D. Schmitt, J. Magn. Magn. Mater. 104-107, Part 2, 1273 (1992).
  49. A. V. Andreev, F. R. de Boer, T. H. Jacobs, and K. H. J. Buschow, J. Magn. Magn. Mater. 104-107, 1305 (1992).
  50. J. L. Wang, M. R. Ibarra, C. Marquina, B. García-Landa, W. X. Li, N. Tang, W. Q. Wang, F. M. Yang, and G. H. Wu, J. Appl. Phys. 92, 1453 (2002).
  51. M. Brouha, K. Buschow, and A. Miedema, IEEE Trans. Magn. 10, 182 (1974).
  52. J. Kamarad, O. Mikulina, Z. Arnold, B. Garcia-Landa, and M. R. Ibarra, J. Appl. Phys. 85, 4874 (1999).
  53. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley Publishing Company, 1972).
  54. M. D. Kuz'min, Y. Skourski, K. P. Skokov, and K. H. Müller, Phys. Rev. B 75, 184439 (2007).
  55. O. Isnard, S. Miraglia, C. Kolbeck, E. Tomey, J. L. Soubeyroux, D. Fruchart, M. Guillot, and C. Rillo, J. Alloys Compd. 178, 15 (1992).
  56. T. Hahn, H. Fuess, T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D. B. Litvin, M. G. Rossmann, E. Arnold, S. Hall, and B. McMahon, eds., In- ternational Tables for Crystallography, 1st ed., Vol. A (International Union of Crystallography, Chester, England, 2006).
  57. A. N. Christensen and R. G. Hazell, Acta Chem. Scand. Ser. A-Phys. Inorg. Chem. 34, 455 (1980).
  58. V. I. Voronin, I. F. Berger, A. G. Kuchin, D. V. Sheptyakov, and A. M. Balagurov, J. Alloys Compd. 315, 82 (2001).
  59. C. Piqué, J. A. Blanco, R. Burriel, E. Abad, M. Artigas, and M. T. Fernández-Díaz, Phys. Rev. B 75, 224424 (2007).
  60. Z. H. Cheng, B. G. Shen, Q. W. Yan, H. Q. Guo, D. F. Chen, C. Gou, K. Sun, F. R. de Boer, and K. H. J. Buschow, Phys. Rev. B 57, 14299 (1998).
  61. A. Herpin, Theorie du Magnetisme, 1st ed., Vol. 1 (Presses Universitaires de France, Paris, 1968).
  62. P. J. von Ranke, N. A. de Oliveira, B. P. Alho, E. J. R. Plaza, V. S. R. de Sousa, L. Caron, and M. S. Reis, J. Phys.: Condes. Matter 21, 056004 (2009).
  63. E. E. Alp, A. M. Umarji, S. K. Malik, G. K. Shenoy, M. Q. Huang, E. B. Boltich, and W. E. Wallace, J. Magn. Magn. Mater. 68, 305 (1987).
  64. E. Girt, Z. Altounian, I. P. Swainson, K. M. Krishnan, and G. Thomas, J. Appl. Phys. 85, 4669 (1998).
  65. K. H. J. Buschow, Handbook of magnetic materials-14, Vol. 14 (Elsevier, Amsterdam, 2002).
  66. K. H. J. Buschow, Handbook of magnetic materials-16, Vol. 16 (Elsevier, Amsterdam, Oxford, 2006).
  67. J. A. Blanco, M. de Podesta, J. I. Espeso, J. C. Gómez Sal, C. Lester, K. A. McEwen, N. Pa- trikios, and J. Rodríguez Fernández, Physical Review B 49, 15126 (1994).
  68. A. V. Andreev and S. Danis, J. Magn. Magn. Mater. 320, E168 (2008).
  69. A. V. Andreev and A. Lindbaum, J. Alloys Compd. 297, 43 (2000).
  70. E. A. Tereshina and A. V. Andreev, Intermetallics 18, 1205 (2010).
  71. H. Zhang, X. Wu, K. G. Nickel, J. Chen, and V. Presser, J. Appl. Phys. 106, 013519 (2009).
  72. H. Chen, Y. Zhang, J. Han, H. Du, C. Wang, and Y. Yang, J. Magn. Magn. Mater. 320, 1382 (2007).
  73. B. P. Alho, N. A. de Oliveira, V. S. R. de Sousa, E. J. R. Plaza, A. Magnus G. Carvalho, and P. J. von Ranke, J. Phys.: Condes. Matter 22, 486008 (2010).