Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR (original) (raw)

Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus

Applied and Environmental Microbiology, 2005

Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Due to its chemical structure, (D-O-Leu-D-Ala-L-OVal -L-Val) 3 , cereulide might be synthesized nonribosomally. Therefore, degenerate PCR primers targeted to conserved sequence motifs of known nonribosomal peptide synthetase (NRPS) genes were used to amplify gene fragments from a cereulide-producing B. cereus strain. Sequence analysis of one of the amplicons revealed a DNA fragment whose putative gene product showed significant homology to valine activation NRPS modules. The sequences of the flanking regions of this DNA fragment revealed a complete module that is predicted to activate valine, as well as a putative carboxyl-terminal thioesterase domain of the NRPS gene. Disruption of the peptide synthetase gene by insertion of a kanamycin cassette through homologous recombination produced cereulidedeficient mutants. The valine-activating module was highly conserved when sequences from nine emetic B. cereus strains isolated from diverse geographical locations were compared. Primers were designed based on the NRPS sequence, and the resulting PCR assay, targeting the ces gene, was tested by using a panel of 143 B. cereus group strains and 40 strains of other bacterial species showing PCR bands specific for only the cereulideproducing B. cereus strains.

Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus

Applied and Environmental Microbiology - AEM, 2005

Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastro- intestinal disease caused by Bacillus cereus. Due to its chemical structure, (D-O-Leu-D-Ala-L-O-Val-L-Val)3, cereulide might be synthesized nonribosomally. Therefore, degenerate PCR primers targeted to conserved sequence motifs of known nonribosomal peptide synthetase (NRPS) genes were used to amplify gene fragments from a cereulide-producing B. cereus strain. Sequence analysis of one of the amplicons revealed a DNA fragment whose putative gene product showed significant homology to valine activation NRPS modules. The sequences of the flanking regions of this DNA fragment revealed a complete module that is predicted to activate valine, as well as a putative carboxyl-terminal thioesterase domain of the NRPS gene. Disruption of the peptide synthetase gene by insertion of a kanamycin cassette through homologous recombination produced cereulide- deficient mutants. The valine-acti...

Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus

Food Microbiology, 2011

In light of the increasing number of serious food borne outbreaks caused by emetic Bacillus cereus, a better understanding of the cereulide synthetase (ces) gene expression and toxin synthesis is required. Here, the relative expression levels of three ces genes (cesP, cesA and cesB) were investigated using quantitative real-time reverse transcription PCR in relation to growth, degree of sporulation and toxin production of the emetic reference strain B. cereus F4810/72 and the weakly emetic strain IH41385. The strict co-transcription of all three genes confirmed the operon structure of the ces gene cluster responsible for cereulide formation. ces transcription turned out to be highly temporal and tightly regulated; ces mRNA was only detectable during mid to late exponential growth in both strains. The low toxigenic potential of the weakly emetic strain IH41385 correlated well with its respective ces transcripts, showing reduced activity at a transcriptional level. Two non-sporulating mutants (F4810/72Dspo0A and F4810/72INsigH) demonstrated that cereulide synthesis is part of the Spo0A regulon but independent of later sporulation processes. Besides strain specific intrinsic factors, ces transcription was found to be significantly influenced by the cellular growth state as well as by extrinsic abiotic factors, like salt. An increase of sodium chloride in the media resulted in lower ces transcription and coincided with lower cereulide toxin levels. Interestingly, at 25 g l À1 NaCl, toxin levels were already reduced without strongly affecting the growth of B. cereus, indicating an inhibitory effect of NaCl on cereulide biosynthesis independent of growth. This illustrates that ces gene expression and toxicity cannot be predicted solely from growth rates or cell numbers, but is influenced by complex interactions of various intrinsic as well as extrinsic factors, which remain to be clarified in detail.

Impact of a Novel PagR-like Transcriptional Regulator on Cereulide Toxin Synthesis in Emetic Bacillus cereus

International Journal of Molecular Sciences

The emetic type of foodborne disease caused by Bacillus cereus is produced by the small peptide toxin cereulide. The genetic locus encoding the Ces nonribosomal peptide synthetase (CesNRPS) multienzyme machinery is located on a 270 kb megaplasmid, designated pCER270, which shares its backbone with the Bacillus anthracis toxin plasmid pXO1. Although the ces genes are plasmid-borne, the chromosomally encoded pleiotropic transcriptional factors CodY and AbrB are key players in the control of ces transcription. Since these proteins only repress cereulide synthesis during earlier growth phases, other factors must be involved in the strict control of ces expression and its embedment in the bacterial life cycle. In silico genome analysis revealed that pCER270 carries a putative ArsR/SmtB family transcription factor showing high homology to PagR from B. anthracis. As PagR plays a crucial role in the regulation of the protective antigen gene pagA, which forms part of anthrax toxin, we used a...

Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis

Journal of Applied Microbiology, 2004

To determine if cereulide, the emetic toxin produced by Bacillus cereus, is produced by a nonribosomal peptide synthetase (NRPS). Methods and Results: NC Y, an emetic strain of Bacillus cereus, was examined for a NRPS gene using PCR with primers recognizing a fragment of a NRPS gene from the cyanobacterium Microcystis. The amplicon was sequenced and compared with other gene sequences using BLAST analysis, which showed that the amplicon from strain NC Y was similar in sequence to peptide synthetase genes in other microorganisms , including Bacillus subtilis and B. brevis, while no such sequence was found in the complete genome sequence of a nonemetic strain of B. cereus. Specific PCR primers were then designed and used to screen 40 B. cereus isolates previously implicated in outbreaks of foodborne illness. The isolates were also screened for toxin production using the MTT cell cytotoxicity assay. PCR and MTT assay screening of the B. cereus isolates revealed a high correlation between the presence of the NRPS gene and cereulide production. Conclusions: The results indicate that cereulide is produced by a NRPS complex. Significance and Impact of the Study: This is the first study to provide evidence identifying the mechanism of production of cereulide, the emetic toxin of B. cereus. The PCR primers developed in the study allow determination of the potential for cereulide production among isolates of B. cereus.

Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus

Fems Microbiology Letters - FEMS MICROBIOL LETT, 2004

Little is known about the process whereby the emetic toxin (or cereulide) of Bacillus cereus is produced. Two cereulide-producing strains of B. cereus were cloned and sequenced following polymerase chain reaction (PCR) amplification with primers that were specific for conserved regions of non-ribosomal peptide synthetase (NRPS) genes. The cloned regions of the B. cereus strains were highly homologous to conserved regions of other peptide synthetase nucleotide sequences. Primers were designed for two variable regions of the NRPS gene sequence to ensure specificity for the emetic strains. A total of 86 B. cereus strains of known emetic or non-emetic activity were screened using these primers. All of the emetic strains (n=30) displayed a 188 bp band following amplification and gel electrophoresis. We have developed an improved method of identifying emetic strains of B. cereus and provided evidence that cereulide is produced by peptide synthetases.

Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1

BMC microbiology, 2006

Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Recently, it has been shown that this toxin is produced by a nonribosomal peptide synthetase (NRPS), but its exact genetic organization and biochemical synthesis is unknown. The complete sequence of the cereulide synthetase (ces) gene cluster, which encodes the enzymatic machinery required for the biosynthesis of cereulide, was dissected. The 24 kb ces gene cluster comprises 7 CDSs and includes, besides the typical NRPS genes like a phosphopantetheinyl transferase and two CDSs encoding enzyme modules for the activation and incorporation of monomers in the growing peptide chain, a CDS encoding a putative hydrolase in the upstream region and an ABC transporter in the downstream part. The enzyme modules responsible for incorporation of the hydroxyl acids showed an unusual structure while the modules responsible for the activation of th...

Identification of the Main Promoter Directing Cereulide Biosynthesis in Emetic Bacillus cereus and Its Application for Real-Time Monitoring of ces Gene Expression in Foods

Applied and Environmental Microbiology, 2010

Cereulide, the emetic Bacillus cereus toxin, is synthesized by cereulide synthetase via a nonribosomal peptide synthetase (NRPS) mechanism. Previous studies focused on the identification, structural organization, and biochemical characterization of the ces gene locus encoding cereulide synthetase; however, detailed information about the transcriptional organization of the ces genes was lacking. The present study shows that the ces-PTABCD genes are transcribed as a 23-kb polycistronic transcript, while cesH, encoding a putative hydrolase, is transcribed from its own promoter. Transcription initiation was mapped by primer extension and rapid amplification of cDNA ends (RACE). Deletion analysis of promoter elements revealed a main promoter located upstream of the cesP coding sequence, encoding a 4-phosphopantetheinyl transferase. This promoter drives transcription of cesPTABCD. In addition, intracistronic promoter regions in proximity to the translational start sites of cesB and cesT were identified but were only weakly active under the chosen assay conditions. The identified main promoter was amplified from the emetic reference strain B. cereus F4810/72 and fused to luciferase genes in order to study promoter activity in complex environments and to establish a biomonitoring system to assess cereulide production in different types of foods. ces promoter activity was strongly influenced by the food matrix and varied by 5 orders of magnitude. The amount of cereulide toxin extracted from spiked foods correlated well with the bioluminescence data, thus illustrating the potential of the established reporter system for monitoring of ces gene expression in complex matrices.